Skip to main content

Advertisement

Log in

LINC01234 Sponging of the miR-513a-5p/AOX1 Axis is Upregulated in Osteoporosis and Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Non-coding RNAs, including long-chain non-coding RNA (lncRNA) and micro-RNA (miRNA), have been implicated in osteoporosis (OP) progression by regulating osteoblast-dependent bone metabolism. Herein, we investigated whether LINC01234, miR-513a-5p, and AOX1 regulate osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells (hMSCs). The expression of LINC01234, miR-513a-5p, and AOX1 was monitored using RT-qPCR or western blotting. Cell proliferation was assessed using a CCK8 assay. Alkaline phosphatase activity (ALP) and alizarin red dye staining were performed to determine osteogenic differentiation. Furthermore, the expression of osteoblast differentiation markers, such as ALP, BMP1 (bone morphogenetic protein 1), osteocalcin (OCN), and osteopontin (OPN), was determined by RT-qPCR. Luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the interplay between miR-513a-5p and LINC01234 or AOX1. Compared with the plasma of healthy controls, LINC01234 and AOX1 were highly expressed in the plasma of patients with OP, whereas miR-513a-5p showed low expression. In contrast, LINC01234 and AOX1 expression displayed a gradual decrease in induced differentiated hMSCs, while miR-513a-5p expression was upregulated with induction time. The predicted binding sites between miR-513a-5p and LINC01234 or AOX1 were verified by luciferase reporter and RIP assays. LINC01234 silencing induced osteogenic differentiation and proliferation in vitro, and miR-513a-5p silencing blunted osteogenic differentiation and proliferation modulated by LINC01234. AOX1 silencing caused by miR-513a-5p enhances osteogenic proliferation and differentiation. LINC01234 sponging of the miR-513a-5p/AOX1 axis impeded the osteogenic differentiation of hMSCs, favoring OP progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Ensrud, K. E., & Crandall, C. J. (2017). Osteoporosis. Annals of Internal Medicine, 167, Itc17–Itc32.

    Article  PubMed  Google Scholar 

  2. Bijelic, R., Milicevic, S., & Balaban, J. (2017). Risk factors for osteoporosis in postmenopausal women. Medical Archives, 71, 25–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kanis, J. A., Cooper, C., Rizzoli, R., & Reginster, J. Y. (2019). Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcified Tissue International, 104, 235–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cotts, K. G., & Cifu, A. S. (2018). Treatment of osteoporosis. Jama, 319, 1040–1041.

    Article  PubMed  Google Scholar 

  5. Qadir, A., Liang, S., Wu, Z., Chen, Z., Hu, L., & Qian, A. (2020). Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. International Journal of Molecular Sciences, 21, 349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Si, J., Wang, C., Zhang, D., Wang, B., & Zhou, Y. (2020). Osteopontin in bone metabolism and bone diseases. Medical Science Monitor, 26, e919159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sikora, M., Śmieszek, A., & Marycz, K. (2021). Bone marrow stromal cells (BMSCs CD45(-) /CD44(+) /CD73(+) /CD90(+) ) isolated from osteoporotic mice SAM/P6 as a novel model for osteoporosis investigation. Journal of Cellular and Molecular Medicine, 25, 6634–6651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Del Real, A., López-Delgado, L., Sañudo, C., García-Ibarbia, C., Laguna, E., Perez-Campo, F. M., Menéndez, G., Alfonso, A., Fakkas, M., García-Montesinos, B., Valero, C., Pérez-Núñez, M. I., & Riancho, J. A. (2020). Long noncoding RNAs as bone marrow stem cell regulators in osteoporosis. DNA and Cell Biology, 39, 1691–1699.

    Article  PubMed  Google Scholar 

  9. Gao, G. C., Yang, D. W., & Liu, W. (2020). LncRNA TERC alleviates the progression of osteoporosis by absorbing miRNA-217 to upregulate RUNX2. European Review for Medical and Pharmacological Sciences, 24, 526–534.

    PubMed  Google Scholar 

  10. Du, M., Wu, B., Fan, S., Liu, Y., Ma, X., & Fu, X. (2020). SNHG14 induces osteogenic differentiation of human stromal (mesenchymal) stem cells in vitro by downregulating miR-2861. BMC Musculoskeletal Disorders, 21, 525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang, W. C., Fu, W. M., Wang, Y. B., Sun, Y. X., Xu, L. L., Wong, C. W., Chan, K. M., Li, G., Waye, M. M., & Zhang, J. F. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Science and Reports, 6, 20121.

    Article  CAS  Google Scholar 

  12. Bi, M., Zheng, L., Chen, L., He, J., Yuan, C., Ma, P., Zhao, Y., Hu, F., Tang, W., & Sheng, M. (2021). ln RNA LINC01234 promotes triple-negative breast cancer progression through regulating the miR-429/SYNJ1 axis. American Journal of Translational Research, 13, 11399–11412.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, F., Liu, C., Zhao, G., Ge, L., Song, Y., Chen, Z., Liu, Z., Hong, K., & Ma, L. (2020). Long non-coding RNA LINC01234 regulates proliferation, migration and invasion via HIF-2α pathways in clear cell renal cell carcinoma cells. PeerJ, 8, e10149.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ma, J., Han, L. N., Song, J. R., Bai, X. M., Wang, J. Z., Meng, L. F., Li, J., Zhou, W., Feng, Y., Feng, W. R., Ma, J. J., Hao, J. T., & Shen, Z. Q. (2020). Long noncoding RNA LINC01234 silencing exerts an anti-oncogenic effect in esophageal cancer cells through microRNA-193a-5p-mediated CCNE1 downregulation. Cellular Oncology (Dordrecht), 43, 377–394.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, W., Li, K., Song, C., Wang, X., Li, Y., Xu, B., Liang, X., Deng, W., Wang, J., & Liu, J. (2020). Knockdown of lncRNA LINC01234 suppresses the tumorigenesis of liver cancer via sponging miR-513a-5p. Frontiers in Oncology, 10, 571565.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu, Y., An, J. J., Tabys, D., Xie, Y. D., Zhao, T. Y., Ren, H. W., & Liu, N. (2019). Effect of lactoferrin on the expression profiles of long non-coding RNA during osteogenic differentiation of bone marrow mesenchymal stem cells. International Journal of Molecular Science, 20, 4834.

    Article  CAS  Google Scholar 

  17. Vantaku, V., Putluri, V., Bader, D. A., Maity, S., Ma, J., Arnold, J. M., Rajapakshe, K., Donepudi, S. R., von Rundstedt, F. C., Devarakonda, V., Dubrulle, J., Karanam, B., McGuire, S. E., Stossi, F., Jain, A. K., Coarfa, C., Cao, Q., Sikora, A. G., Villanueva, H., … Putluri, N. (2020). Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene, 39, 6265–6285.

    Article  CAS  PubMed  Google Scholar 

  18. Coelho, C., Muthukumaran, J., Santos-Silva, T., & João Romão, M. (2019). Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: a bio-informatics study. Pharmacology Research and Perspectives, 7, e00538.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ko, N. Y., Chen, L. R., & Chen, K. H. (2020). The role of micro RNA and long-non-coding RNA in osteoporosis. International Journal of Molecular Sciences, 21(14), 4886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, Y., Liu, C., Lei, M., Sun, S., Zheng, W., Niu, Y., & Xia, X. (2020). Retraction Note: LncRNA TUG1 was upregulated in osteoporosis and regulates the proliferation and apoptosis of osteoclasts. Journal of Orthopaedic Surgery and Research, 15, 469.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qian, G., Yu, Y., Dong, Y., Hong, Y., & Wang, M. (2022). LncRNA AWPPH is downregulated in osteoporosis and regulates type I collagen α1 and α2 ratio. Archives of Physiology and Biochemistry, 128, 1297–1301.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, W., Li, K., Song, C., Wang, X., Li, Y., Xu, B., Liang, X., Deng, W., Wang, J., & Liu, J. (2020). Corrigendum: knockdown of lncRNA LINC01234 suppresses the tumorigenesis of liver cancer via sponging miR-513a-5p. Frontiers in Oncology, 10, 636847.

    Article  PubMed  Google Scholar 

  23. Gu, Z., Xie, D., Huang, C., Ding, R., Zhang, R., Li, Q., Lin, C., & Qiu, Y. (2020). MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway. Journal of Cellular and Molecular Medicine, 24, 12619–12632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang, S., Zhao, Y., & Hu, X. (2020). LncRNA ADAMTS9-AS1 restrains the aggressive traits of breast carcinoma cells via sponging miR-513a-5p. Cancer Management and Research, 12, 10693–10703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, L., Chen, Z., Zhang, J., & Xing, Y. (2012). Effect of miR-513a-5p on etoposide-stimulating B7–H1 expression in retinoblastoma cells. Journal of Huazhong University of Science and Technology. Medical Sciences, 32, 601–606.

    Article  CAS  Google Scholar 

  26. Garrido, C., & Leimkühler, S. (2021). The inactivation of human aldehyde oxidase 1 by hydrogen peroxide and superoxide. Drug Metabolism and Disposition, 49, 729–735.

    Article  CAS  PubMed  Google Scholar 

  27. An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., Luan, W., Ma, F., Ni, L., Tang, X., Liu, M., Guo, W., & Yu, L. (2019). Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. The FASEB Journal, 33, 12515–12527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The experiments and data analysis were carried out by ZYY. The study was conceptualized and designed by QSH. The data was collected by ZYY. ZYY and QSH was in charge of data analysis and interpretation. The paper was written by ZYY. The manuscript was reviewed and revised by QSH. Both authors evaluated and approved the article.

Corresponding author

Correspondence to Qiansong He.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest.

Consent to Participate

All patients signed a written informed consent.

Consent for Publication

The participants gave their consent for the study to be published.

Ethics Approval

The Ethics Committee of Bayi Orthopedic HOSPITAL approved this study. The processing of the clinical tissue samples complied with the ethical principles of the Declaration of Helsinki. All of the patients completed an informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., He, Q. LINC01234 Sponging of the miR-513a-5p/AOX1 Axis is Upregulated in Osteoporosis and Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Mol Biotechnol 65, 2108–2118 (2023). https://doi.org/10.1007/s12033-023-00712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00712-3

Keywords

Navigation