Skip to main content
Log in

Metabolic Engineering of De Novo Pathway for the Production of 2′-Fucosyllactose in Escherichia coli

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

2′-Fucosyllactose (2′-FL), one of the most abundant oligosaccharides in human milk, has gained increased attention owing to its nutraceutical and pharmaceutical potential. However, limited availability and high-cost of preparation have limited its widespread application and in-depth investigation of its potential functions. Here, a modular pathway engineering was implemented to construct an Escherichia coli strain to improve the biosynthesis titer of 2′-FL. Before overexpression of manB, manC, gmd, wcaG, and heterologous expression of futC, genes wcaJ and lacZ encoding UDP-glucose lipid carrier transferase and β-galactosidase, respectively, were inactivated from E. coli BL21 (DE3) with the CRISPR-Cas9 system, which inhibited the production of 2′-FL. The results showed that final shake flask culture yielded a 3.8-fold increase in 2′-FL (0.98 g/L) from the engineered strain ELC07. Fed-batch fermentation conditions were optimized in a 3-L bioreactor. The highest titer of 2′-FL (18.22 g/L) was obtained, corresponding to a yield of 0.25 g/g glycerol and a substrate conversion of 0.88 g/g lactose.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Li, M., Li, C., Hu, M., & Zhang, T. (2022). Metabolic engineering strategies of de novo pathway for enhancing 2′-fucosyllactose synthesis in Escherichia coli. Microbial Biotechnology, 15, 1561–1573.

    Article  CAS  PubMed  Google Scholar 

  2. Bode, L. (2012). Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology, 22(9), 1147–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thongaram, T., Hoeflinger, J. L., Chow, J., & Miller, M. J. (2017). Human milk oligosaccharide consumption by probiotic and human-associated Bifidobacteria and Lactobacilli. Journal of Dairy Science, 100(10), 7825–7833.

    Article  CAS  PubMed  Google Scholar 

  4. Vandenplas, Y., Berger, B., Carnielli, V. P., Ksiazyk, J., Lagström, H., Sanchez-Luna, M., Migacheva, N., Mosselmans, J. M., Picaud, J. C., Possner, M., Singhal, A., & Wabitsch, M. (2018). Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients, 10(9), 1161.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bienenstock, J., Buck, R. H., Linke, H., Forsythe, P., Stanisz, A. M., & Kunze, W. A. (2013). Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS ONE, 8(10), e76236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacobi, S. K., Yatsunenko, T., Li, D., Dasgupta, S., Yu, R. K., Berg, B. M., Chichlowski, M., & Odle, J. (2016). Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. Journal of Nutrition, 146(2), 200–208.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, W. H., Pathanibul, P., Quarterman, J., Jo, J. H., Han, N. S., Miller, M., Jin, Y. S., & Seo, J. H. (2012). Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microbial Cell Factories, 11, 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hegar, B., Wibowo, Y., Basrowi, R. W., Ranuh, R. G., Sudarmo, S. M., Munasir, Z., Atthiyah, A. F., Widodo, A. D., Supriatmo, K. M., Suryawan, A., Diana, N. R., Manoppo, C., & Vandenplas, Y. (2019). The role of two human milk oligosaccharides, 2′-fucosyllactose and lacto-N-neotetraose, in infant nutrition. Pediatric Gastroenterology, Hepatology & Nutrition, 22(4), 330–340.

    Article  Google Scholar 

  9. Castanys-Muñoz, E., Martin, M. J., & Prieto, P. A. (2013). 2′-Fucosyllactose: An abundant, genetically determined soluble glycan present in human milk. Nutrition Reviews, 71(12), 773–789.

    Article  PubMed  Google Scholar 

  10. Li, W., Zhu, Y., Wan, L., Guang, C., & Mu, W. (2021). Pathway optimization of 2′-fucosyllactose production in engineered Escherichia coli. Journal of Agricultural and Food Chemistry, 69(5), 1567–1577.

    Article  CAS  PubMed  Google Scholar 

  11. Baumgärtner, F., Seitz, L., Sprenger, G. A., & Albermann, C. (2013). Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microbial Cell Factories, 12, 1–13.

    Article  Google Scholar 

  12. Chin, Y. W., Park, J. B., Park, Y. C., Kim, K. H., & Seo, J. H. (2013). Metabolic engineering of Corynebacterium glutamicum to produce GDP-l-fucose from glucose and mannose. Bioprocess and Biosystems Engineering, 36(6), 749–756.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, D., Yang, K., Liu, J., Xu, Y., Wang, Y., Wang, R., Liu, B., & Feng, L. (2017). Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metabolic Engineering, 41, 23–38.

    Article  CAS  PubMed  Google Scholar 

  14. Ishihara, H., & Heath, E. C. (1968). The metabolism of l-fucose IV. The biosyntthesis of guanosine diphosphate l-fucose in porcine liver. Journal of Biological Chemistry, 243, 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  15. Park, S. H., Pastuszak, I., Drake, R., & Elbein, A. D. (1998). Purification to apparent homogeneity and properties of pig kidney l-fucose kinase. Journal of Biological Chemistry, 273, 5685–5691.

    Article  CAS  PubMed  Google Scholar 

  16. Pastuszak, I., Ketchum, C., Hermanson, G., Sjöberg, E. J., Drake, R., & Elbein, A. D. (1998). GDP-l-fucose pyrophosphorylase purification, cDNA cloning, and properties of the enzyme. Journal of Biological Chemistry, 273, 30165–30174.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, T. W., Ito, H., Chiba, Y., Kubota, T., Sato, T., & Narimatsu, H. (2011). Functional expression of l-fucokinase/guanosine 5′-diphosphate-l-fucose pyrophosphorylase from Bacteroides fragilis in Saccharomyces cerevisiae for the production of nucleotide sugars from exogenous monosaccharides. Glycobiology, 21(9), 1228–1236.

    Article  CAS  PubMed  Google Scholar 

  18. Michael, J., Coyne, B. R., Martin, M. L., & Laurie, E. C. (2005). Human symbionts use a host-like pathway for surface fucosylation. Science, 307, 1778–1781.

    Article  Google Scholar 

  19. Albermann, C., Piepersberg, W., & Wehmeier, U. F. (2001). Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes. Carbohydrate Research, 334, 97–103.

    Article  CAS  PubMed  Google Scholar 

  20. Chin, Y. W., Seo, N., Kim, J. H., & Seo, J. H. (2016). Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5′-diphosphate (GDP)-l-fucose. Biotechnology and Bioengineering, 113(11), 2443–2452.

    Article  CAS  PubMed  Google Scholar 

  21. Chin, Y. W., Kim, J. Y., Lee, W. H., & Seo, J. H. (2015). Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star (DE3) by modulation of lactose metabolism and fucosyltransferase. Journal of Biotechnology, 210, 107–115.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81(7), 2506–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, D., Yuan, S., Xiong, B., Sun, H., Ye, L., Li, J., Zhang, X., & Bi, C. (2016). Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microbial Cell Factories, 15(1), 205.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zerbini, F., Zanella, I., Fraccascia, D., König, E., Irene, C., Frattini, L. F., Tomasi, M., Fantappiè, L., Ganfini, L., Caproni, E., Parri, M., Grandi, A., & Grandi, G. (2017). Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microbial Cell Factories, 16(1), 68.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fordjour, E., Adipah, F. K., Zhou, S., Du, G., & Zhou, J. (2019). Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microbial Cell Factories, 18(1), 74.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao, M., Huang, D., Zhang, X., Koffas, M. A. G., Zhou, J., & Deng, Y. (2018). Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metabolic Engineering, 47, 254–262.

    Article  CAS  PubMed  Google Scholar 

  28. Di, H., Yang, K., Liu, J., Xu, Y., Wang, Y., Wang, R., Liu, B., & Feng, L. (2017). Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metabolic Engineering, 41, 23–38.

    Article  Google Scholar 

  29. Wan, L., Zhu, Y., Li, W., Zhang, W., & Mu, W. (2020). Combinatorial modular pathway engineering for guanosine 5′-diphosphate-l-fucose production in recombinant Escherichia coli. Journal of Agricultural and Food Chemistry, 68(20), 5668–5675.

    Article  CAS  PubMed  Google Scholar 

  30. Korz, D. J., Rinas, U., Hellmuth, K., Sanders, E. A., & Deckwer, W. D. (1995). Simple fed-batch technique for high cell density cultivation of Escherichia coli. Journal of Biotechnology, 39, 59–65.

    Article  CAS  PubMed  Google Scholar 

  31. Young, L. I., & Sang, Y. L. (1996). Enhanced production of poly(3-hydroxybutyrate) by filamentation-suppressed recombinant Escherichia coli in a defined medium. Journal of Polymers and the Environment, 4, 131–134.

    Google Scholar 

  32. Wu, H., Chen, S., Ji, M., Chen, Q., Shi, J., & Sun, J. (2019). Activation of colanic acid biosynthesis linked to heterologous expression of the polyhydroxybutyrate pathway in Escherichia coli. International Journal of Biological Macromolecules, 128, 752–760.

    Article  CAS  PubMed  Google Scholar 

  33. Sander, J. D., & Joung, J. K. (2014). CRISPR-cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faijes, M., Castejón-Vilatersana, M., Val-Cid, C., & Planas, A. (2019). Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnology Advances, 37(5), 667–697.

    Article  CAS  PubMed  Google Scholar 

  35. Puertas, J. M., Ruiz, J., Vega, M. R. D. L., Lorenzo, J., Caminal, G., & González, G. (2010). Influence of specific growth rate over the secretory expression of recombinant potato carboxypeptidase inhibitor in fed-batch cultures of Escherichia coli. Process Biochemistry, 45(8), 1334–1341.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Major Science and Technology Innovation Project of Shandong Province (Grant No. 2020CXGC010601) and Kitty Hawk Project of Zhejiang Provincial Administration for Market Regulation (Grant No. CY2022004).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CL and ML. The first draft of the manuscript was written by CL. Reviewing and editing of the manuscript were performed by ML and MH. Supervision, giving major comments, and project administration were contributed by TZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, M., Hu, M. et al. Metabolic Engineering of De Novo Pathway for the Production of 2′-Fucosyllactose in Escherichia coli. Mol Biotechnol 65, 1485–1497 (2023). https://doi.org/10.1007/s12033-023-00657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00657-7

Keywords

Navigation