Skip to main content

Advertisement

Log in

Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301.

    Article  CAS  PubMed  Google Scholar 

  2. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51.

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez-Rojas, A., Rodríguez-Beltrán, J., Couce, A., & Blázquez, J. (2013). Antibiotics and antibiotic resistance: A bitter fight against evolution. International Journal of Medical Microbiology, 303(6–7), 293–297.

    Article  PubMed  CAS  Google Scholar 

  4. Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. Journal of Infectious Diseases, 197(8), 1079–1081.

    Article  PubMed  Google Scholar 

  5. Dwivedi, P., Narvi, S. S., & Tewari, R. P. (2013). Application of polymer nanocomposites in the nanomedicine landscape: Envisaging strategies to combat implant associated infections. Journal of Applied Biomaterials & Functional Materials, 11(3), 129–142.

    Article  CAS  Google Scholar 

  6. Rosa, T. F., et al. (2020). Alternatives for the treatment of infections caused by ESKAPE pathogens. Journal of Clinical Pharmacy and Therapeutics, 45(4), 863–873.

    Article  PubMed  Google Scholar 

  7. Roca, I., et al. (2015). The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infections, 6, 22–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(5), 95–108.

    Article  CAS  PubMed  Google Scholar 

  9. Rmling, U., & Balsalobre, C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of Internal Medicine, 272(6), 541–561.

    Article  CAS  Google Scholar 

  10. Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4), a010306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Valentini, M., Gonzalez, D., Mavridou, D. A., & Filoux, A. (2018). Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Current Opinion in Microbiology, 41, 15–20.

    Article  CAS  PubMed  Google Scholar 

  12. Lister, J. L., & Horswill, A. R. (2014). Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 4, 178.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Beloin, C., & Ghigo, J. M. (2008). Escherichia coli biofilms. Current Topics in Microbiology and Immunology, 322, 249–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.

    Article  CAS  PubMed  Google Scholar 

  15. Fong, J. N. C., & Yildiz, F. H. (2015). Biofilm matrix proteins. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.MB-0004-2014

    Article  PubMed  Google Scholar 

  16. Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.MB-0011-2014

    Article  PubMed  Google Scholar 

  17. Werner, E., et al. (2004). Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environment Microbiology, 70(10), 6188–6196.

    Article  CAS  Google Scholar 

  18. Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6(3), 199.

    Article  CAS  PubMed  Google Scholar 

  19. Campoccia, D., Mirzaei, R., Montanaro, L., & Arciola, C. R. (2019). Hijacking of immune defences by biofilms: A multifront strategy. Biofouling, 35(10), 1055–1074.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, P. K., Yeung, A., & Hancock, R. (2014). Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. Journal of Biotechnology, 191, 121–130.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, J. S., et al. (2011). Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochemical and Biophysical Research Communications, 413(1), 105–110.

    Article  CAS  PubMed  Google Scholar 

  22. Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2(2), 114–122.

    Article  CAS  PubMed  Google Scholar 

  23. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappinscott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  PubMed  Google Scholar 

  24. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  25. Gordon, R., Pedro, M. J., & Luis, L. (2010). Candida biofilms on implanted biomaterials: A clinically significant problem. FEMS Yeast Research, 7, 979–986.

    Google Scholar 

  26. Kojic, E. M., & Darouiche, R. O. (2004). Candida infections of medical devices. Clinical Microbiology Reviews, 17(2), 255–267.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Olaya, R., & Jean-Marc, G. (2012). Multi-species biofilms: How to avoid unfriendly neighbors. FEMS Microbiology Reviews, 36(5), 972–989.

    Article  CAS  Google Scholar 

  28. Whiteley, M., et al. (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413(6858), 860–864.

    Article  CAS  PubMed  Google Scholar 

  29. Khan, F., Lee, J., Manivasagan, P., Pham, D. T. N., Oh, J., & Kim, Y. (2019). Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microbial Pathogenesis, 135, 103623.

    Article  CAS  PubMed  Google Scholar 

  30. Toutain, C. M., Caizza, N. C., Zegans, M. E., & O’Toole, G. A. (2007). Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Research in Microbiology, 158(5), 471–477.

    Article  CAS  PubMed  Google Scholar 

  31. Caiazza, N. C., Merritt, J. H., Brothers, K. M., & O’Toole, G. A. (2007). Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 189(9), 3603–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barken, K. B., et al. (2008). Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 10(9), 2331–2343.

    Article  CAS  PubMed  Google Scholar 

  33. Petrova, O. E., & Sauer, K. (2016). Escaping the biofilm in more than one way: Desorption, detachment or dispersion. Current Opinion in Microbiology, 30, 67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brackman, G., & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design, 21(1), 5–11.

    Article  CAS  PubMed  Google Scholar 

  35. Zgurskaya, H. I., & Rybenkov, V. V. (2020). Permeability barriers of Gram-negative pathogens. Annals of the New York Academy of Sciences, 1459, 5–18.

    Article  PubMed  Google Scholar 

  36. Rodríguez-Martínez, J. M., Poirel, L., & Nordmann, P. (2009). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 53(11), 4783–4788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Trias, J., & Nikaido, H. (1990). Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 34(1), 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Routh, M. D., Zalucki, Y., Su, C. C., Zhang, Q., Shafer, W. M., & Yu, E. W. (2011). Efflux pumps of the resistance-nodulation-division family: A perspective of their structure, function and regulation in Gram-negative bacteria. Advances in Enzymology and Related Areas of Molecular Biology, 77, 109–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, H. B., Hou, W. T., Cheng, M. T., Jiang, Y. L., Chen, Y., & Zhou, C. Z. (2018). Structure of a MacAB-like efflux pump from Streptococcus pneumoniae. Nature Communications, 9(1), 196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chambers, C. S., et al. (2019). Defying multidrug resistance! modulation of related transporters by flavonoids and flavonolignans. Journal of Agricultural and Food Chemistry, 68(7), 1763–1769.

    Article  PubMed  CAS  Google Scholar 

  41. Brooun, A., Liu, S., & Lewis, K. (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 44(3), 640–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paul, M., Yahav, D., Bivas, A., Fraser, A., & Leibovici, L. (2010). Anti-pseudomonal beta-lactams for the initial, empirical, treatment of febrile neutropenia: Comparison of beta-lactams. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD005197.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Helfand, M. S., & Bonomo, R. A. (2003). β-lactamases: A survey of protein diversity. Current Drug Targets: Infectious Disorders, 3(1), 9–23.

    CAS  PubMed  Google Scholar 

  44. Lodge, J. M., Minchin, S. D., Piddock, L., & Busby, S. J. (1990). Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC β-lactamase. The Biochemical Journal, 272(3), 627–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poole, K. (2004). Resistance to β-lactam antibiotics. Cellular and Molecular Life Sciences, 61(17), 2200–2223.

    Article  CAS  PubMed  Google Scholar 

  46. Jacoby, G. (2009). AmpC β-lactamases. Clinical Microbiology Reviews, 22(1), 161–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Livermore, D. M. (1992). Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 36(9), 2046–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nguyen, D., et al. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334(6058), 982–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poole, K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67(9), 2069–2089.

    Article  CAS  PubMed  Google Scholar 

  50. Dalebroux, Z. D., Svensson, S. L., Gaynor, E. C., & Swanson, M. S. (2010). ppGpp conjures bacterial virulence. Microbiology and Molecular Biology Reviews, 74(2), 171–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Potrykus, K., & Cashel, M. (2008). (p)ppGpp: Still magical? Annual Review of Microbiology, 62, 35–51.

    Article  CAS  PubMed  Google Scholar 

  52. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T., & Gerdes, K. (2015). Recent functional insights into the role of (p) ppGpp in bacterial physiology. Nature Reviews Microbiology, 13(5), 298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kriel, A., et al. (2012). Direct regulation of GTP homeostasis by (p)ppGpp: A critical component of viability and stress resistance. Molecular Cell, 48(2), 231–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalia, D., et al. (2013). Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chemical Society Reviews, 42(1), 305–341.

    Article  CAS  PubMed  Google Scholar 

  55. Jenal, U., Reinders, A., & Lori, C. (2017). Cyclic di-GMP: Second messenger extraordinaire. Nature Reviews Microbiology, 15(5), 271–284.

    Article  CAS  PubMed  Google Scholar 

  56. Skotnicka, D., Petters, T., Heering, J., Hoppert, M., Kaever, V., & Søgaard-Andersen, L. (2016). Cyclic di-GMP regulates type IV pilus-dependent motility in Myxococcus xanthus. Journal of Bacteriology, 198(1), 77–90.

    Article  CAS  PubMed  Google Scholar 

  57. Kazmierczak, B. I., Lebron, M. B., & Murray, T. S. (2006). Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Molecular Microbiology, 60(4), 1026–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, C. J., et al. (2015). C-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathogens, 11(10), e1005068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Serra, D. O., Richter, A. M., Klauck, G., Mika, F., & Hengge, R. (2013). Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio, 4(2), e00103-13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Valentini, M., & Filloux, A. (2016). Biofilms and cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria. Journal of Biological Chemistry, 291(24), 12547–12555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319–346.

    Article  CAS  PubMed  Google Scholar 

  62. Mukherjee, S., & Bassler, B. L. (2019). Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology, 17(6), 371–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bjarnsholt, T., et al. (2005). Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology, 151, 373–383.

    Article  CAS  PubMed  Google Scholar 

  64. Yarwood, J. M., Bartels, D. J., Volper, E. M., & Greenberg, E. P. (2004). Quorum sensing in Staphylococcus aureus biofilms. Journal of Bacteriology, 186(6), 1838–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng, W., et al. (2017). Assembly, structure, function and regulation of type III secretion systems. Nature Reviews Microbiology, 15(6), 323–337.

    Article  CAS  PubMed  Google Scholar 

  66. Defoirdt, T. (2017). Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26(4), 313–328.

    Article  PubMed  CAS  Google Scholar 

  67. Mah, T. F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S., & O’Toole, G. A. (2003). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 426(6964), 306–310.

    Article  CAS  PubMed  Google Scholar 

  68. Sadovskaya, I., Vinogradov, E., Li, J., Hachani, A., Kowalska, K., & Filloux, A. (2010). High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: The ndvB gene is involved in the production of highly glycerol-phosphorylatedβ-(1→3)-glucans, which bind aminoglycosides. Glycobiology, 7, 895–904.

    Article  CAS  Google Scholar 

  69. Southey-Pillig, C. J., Davies, D. G., & Sauer, K. (2005). Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 187(23), 8114–8126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liao, J., & Sauer, K. (2012). The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. Journal of Bacteriology, 194(18), 4823–4836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sirelkhatim, A., et al. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Letters, 7(3), 219–242.

    CAS  Google Scholar 

  72. Webster, T. J., & Seil, J. T. (2012). Antimicrobial applications of nanotechnology: Methods and literature. International Journal of Nanomedicine, 7, 2767–2781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Alavi, M., & Karimi, N. (2019). Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. International Journal of Biological Macromolecules, 128, 893–901.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X., Han, Q., Yu, N., Wang, T., Wang, C., & Yang, R. (2018). GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Colloids and Surfaces. B, Biointerfaces, 162, 296–305.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479–489.

    Article  CAS  Google Scholar 

  76. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870.

    Article  CAS  PubMed  Google Scholar 

  77. Sawai, J., Shoji, S., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M., & Kojima, H. (1998). Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of Fermentation and Bioengineering, 86(5), 521–522.

    Article  CAS  Google Scholar 

  78. Hui, Y., Chao, L., Yang, D., Zhang, H., & Xi, Z. (2010). Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. Journal of Applied Toxicology, 29(1), 69–78.

    Google Scholar 

  79. Tao, B., Zhao, W., Lin, C., Yuan, Z., & Cai, K. (2020). Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chemical Engineering Journal, 390, 124621.

    Article  CAS  Google Scholar 

  80. Dwyer, D. J., Kohanski, M. A., & Collins, J. J. (2009). Role of reactive oxygen species in antibiotic action and resistance. Current Opinion in Microbiology, 12(5), 482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nature Reviews Microbiology, 11, 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.

    Article  CAS  PubMed  Google Scholar 

  83. Jia, Z., et al. (2016). Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials, 75, 203–222.

    Article  CAS  PubMed  Google Scholar 

  84. Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S., & Collins, J. J. (2013). Silver enhances antibiotic activity against gram-negative bacteria. Science Translational Medicine, 5(190), 190ra81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang, X. H., et al. (2019). Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. Materials Science & Engineering, C: Materials for Biological Applications, 102, 415–426.

    Article  CAS  Google Scholar 

  86. Song, J. W., et al. (2020). Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated self-assembly. Small (Weinheim an der Bergstrasse, Germany), 16(8), 1907309.

    Article  CAS  Google Scholar 

  87. Mijnendonckx, K., Leys, N., Mahillon, J., Silver, S., & Houdt, R. V. (2013). Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals, 26(4), 609–621.

    Article  CAS  PubMed  Google Scholar 

  88. Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., & Chen, Y. B. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85(4), 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  89. Kellici, S., et al. (2016). Calixarene assisted rapid synthesis of silver-graphene nanocomposites with enhanced antibacterial activity. ACS Applied Materials & Interfaces, 8(29), 19038–19046.

    Article  CAS  Google Scholar 

  90. Wang, H. Y., Zhou, Y. F., Jiang, X. X., Sun, B., Zhu, Y., Wang, H., Su, Y. Y., & He, Y. (2015). Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced raman scattering multifunctional chip. Angewandte Chemie (International ed. in English), 54(17), 5132–5136.

    Article  CAS  Google Scholar 

  91. Wahab, R., et al. (2014). ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and Surfaces. B, Biointerfaces, 117(7), 267–276.

    Article  CAS  PubMed  Google Scholar 

  92. Jung, M., Kim, S., & Ju, S. (2011). Enhancement of green emission from Sn-doped ZnO nanowires. Optical Materials, 33(3), 280–283.

    Article  CAS  Google Scholar 

  93. Jan, T., Iqbal, J., Ismail, M., Zakaullah, M., Naqvi, S. H., & Badshah, N. (2013). Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. International Journal of Nanomedicine, 8, 3679–3687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sayilkan, F., Asiltürk, M., Kiraz, N., Burunkaya, E., Arpaç, E., & Sayilkan, E. (2009). Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate. Journal of Hazardous Materials, 162(2–3), 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  95. Jennings, M. C., Minbiole, K. P., & Wuest, W. M. (2015). Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis., 1(7), 288–303.

    Article  CAS  PubMed  Google Scholar 

  96. Manaargadoo-Catin, M., Ali-Cherif, A., Pougnas, J. L., & Perrin, C. (2015). Hemolysis by surfactants—A review. Advances in Colloid and Interface Science, 228, 1–16.

    Article  PubMed  CAS  Google Scholar 

  97. Mitchell, M. A., Iannetta, A. A., Jennings, M. C., Fletcher, M. H., Wuest, W. M., & Minbiole, K. P. C. (2015). Scaffold-hopping of multicationic amphiphiles yields three new classes of antimicrobials. ChemBioChem, 16(16), 2299–2303.

    Article  CAS  PubMed  Google Scholar 

  98. Liu, F., He, D., Yu, Y., Cheng, L., & Zhang, S. (2019). Quaternary ammonium salt-based cross-linked micelles to combat biofilm. Bioconjugate Chemistry, 30(3), 541–546.

    Article  CAS  PubMed  Google Scholar 

  99. He, D., Yu, Y., Liu, F., Yao, Y., & Zhang, S. (2019). Quaternary ammonium salt-based cross-linked micelle templated synthesis of highly active silver nanocomposite for synergistic anti-biofilm application. Chemical Engineering Journal, 382, 122976.

    Article  CAS  Google Scholar 

  100. Raafat, D., Bargen, K. V., Haas, A., & Sahl, H. G. (2008). Insights into the mode of action of chitosan as an antibacterial compound. Applied and Environment Microbiology, 74(12), 3764–3773.

    Article  CAS  Google Scholar 

  101. Saravanan, S., Nethala, S., Pattnaik, S., Tripathi, A., Moorthi, A., & Selvamurugan, N. (2011). Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules, 49(2), 188–193.

    Article  CAS  PubMed  Google Scholar 

  102. Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40–50.

    Article  CAS  Google Scholar 

  103. Tarek, A., & Bader, A. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy, 10, 483–507.

    Google Scholar 

  104. Shariatinia, Z. (2018). Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 263, 131–194.

    Article  PubMed  CAS  Google Scholar 

  105. Jiang, F., Deng, Y., Yeh, C. K., & Sun, Y. (2014). Quaternized chitosans bind onto preexisting biofilms and eradicate pre-attached microorganisms. J. Mater. Chem. B., 2(48), 8518–8527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Paz, L. E. C., Resin, A., Howard, K. A., Sutherland, D. S., & Wejse, P. L. (2011). Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Applied and Environment Microbiology, 77(11), 3892–3895.

    Article  CAS  Google Scholar 

  107. Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, 2012, 632698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Darouiche, R. O. (2004). Treatment of infections associated with surgical implants. The New England Journal of Medicine, 172(5), 2102.

    Google Scholar 

  109. Al-Radha, A. S. D., Dymock, D., Younes, C., & O’Sullivan, D. (2012). Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. Journal of Dentistry, 40(2), 146–153.

    Article  CAS  PubMed  Google Scholar 

  110. Lv, H., Chen, Z., Yang, X., Cen, L., Zhang, X., & Gao, P. (2014). Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. Journal of Dentistry, 42(11), 1464–1472.

    Article  CAS  PubMed  Google Scholar 

  111. Subhaswaraj, P., Barik, S., Macha, C., Chiranjeevi, P. V., & Siddhardha, B. (2018). Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. Journal of Food Science and Technology, 97, 752–759.

    CAS  Google Scholar 

  112. Fu, J., Ji, J., Yuan, W., & Shen, J. (2005). Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials, 26(33), 6684–6692.

    Article  CAS  PubMed  Google Scholar 

  113. Masood, N., et al. (2019). Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. International Journal of Pharmaceutics, 559, 23–36.

    Article  CAS  PubMed  Google Scholar 

  114. Lodhi, G., et al. (2014). Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Research International, 2014(1), 654913.

    PubMed  PubMed Central  Google Scholar 

  115. Negm, N. A., Hefni, H. H. H., Abd-Elaal, A. A. A., Badr, E. A., & Kana, M. T. H. (2020). Advancement on modification of chitosan biopolymer and its potential applications. International Journal of Biological Macromolecules, 152, 681–702.

    Article  CAS  PubMed  Google Scholar 

  116. Khan, F., Lee, J. W., Pham, D. T. N., & Kim, Y. M. (2019). Chitooligosaccharides as antibacterial, antibiofilm, antihemolytic and anti-virulence agent against Staphylococcus aureus. Current Pharmaceutical Biotechnology, 20(14), 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  117. He, X., Hwang, H. M., Aker, W. G., Wang, P., Lin, Y., Jiang, X., & He, X. (2014). Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiological Research, 169(9–10), 759–767.

    Article  CAS  PubMed  Google Scholar 

  118. Barraud, N., Hassett, D. J., Hwang, S. H., Rice, S. A., Kjelleberg, S., & Webb, J. S. (2006). Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Journal of Bacteriology, 188(21), 7344–7353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Barraud, N., Schleheck, D., Klebensberger, J., Webb, J. S., Hassett, D. J., Rice, S. A., & Kjelleberg, S. (2009). Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. Journal of Bacteriology, 191(23), 7333–7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rinaldo, S., Giardina, G., Mantoni, F., Paone, A., & Cutruzzolà, F. (2018). Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiology Letters, 365(6), fny029.

    Article  CAS  Google Scholar 

  121. Reighard, K. P., Hill, D. B., Dixon, G. A., Worley, B. V., & Schoenfisch, M. H. (2015). Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. Biofouling, 31(9–10), 775–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Peng, Z., Wang, L., Du, L., Guo, S., Wang, X., & Tang, T. (2010). Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydrate Polymers, 81(2), 275–283.

    Article  CAS  Google Scholar 

  123. Zhao, X., Li, P., Guo, B., & Ma, P. X. (2015). Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomaterialia, 26, 236–248.

    Article  CAS  PubMed  Google Scholar 

  124. He, J., Liang, Y., Shi, M., & Guo, B. (2019). Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chemical Engineering Journal, 385, 123464.

    Article  CAS  Google Scholar 

  125. Zheng, Z., Bian, S., Li, Z., Zhang, Z., & Zhao, X. (2020). Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing. Carbohydrate Polymers, 249, 116826.

    Article  CAS  PubMed  Google Scholar 

  126. Khan, F., Pham, D. T. N., Oloketuyi, S. F., Manivasagan, P., & Kim, Y. M. (2019). Chitosan and their derivatives: antibiofilm drugs against pathogenic bacteria. Colloids and Surfaces. B, Biointerfaces, 185, 110627.

    Article  PubMed  CAS  Google Scholar 

  127. Goy, R. C., Briito, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19(3), 241–247.

    Article  CAS  Google Scholar 

  128. Ageitos, J. M., Sánchez-Pérez, A., Calo-Mata, P., & Villa, T. G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138.

    Article  CAS  PubMed  Google Scholar 

  129. Torres, M. D. T., Sothiselvam, S., Lu, T. K., & Fuente-Nunez, C. (2019). Peptide design principles for antimicrobial applications. Journal of Molecular Biology, 431(18), 3547–3567.

    Article  CAS  PubMed  Google Scholar 

  130. Mookherjee, N., Anderson, M. A., Haagsman, H. P., & Davidson, D. J. (2020). Antimicrobial host defence peptides: Functions and clinical potential. Nature Reviews. Drug Discovery, 19(5), 311–332.

    Article  CAS  PubMed  Google Scholar 

  131. Qi, F., et al. (2019). Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Applied Materials & Interfaces, 11(21), 18907–18913.

    Article  CAS  Google Scholar 

  132. Zhang, Q., et al. (2019). Host defense peptide mimicking poly-β-peptides with fast, potent and broad spectrum antibacterial activities. Biomater. Sci., 7(5), 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  133. Zhou, M., Qian, Y., Xie, J., Zhang, W., & Liu, R. (2020). Poly(2-oxazoline)-based functional peptide mimics: Eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angewandte Chemie (International ed. in English), 59(16), 6412–6419.

    Article  CAS  Google Scholar 

  134. Dai, C., Zhou, M., Jiang, W., Xiao, X., & Liu, R. (2020). Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s. Journal of Materials Science and Technology, 59, 220–226.

    Article  Google Scholar 

  135. Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S., & Cavard, D. (2007). Colicin Biology, 71(1), 158–229.

    CAS  Google Scholar 

  136. Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, Potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics, 9(1), 32.

    Article  CAS  PubMed Central  Google Scholar 

  137. Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of Applied Microbiology, 120(6), 1449–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Costerton, J. W. (1999). Bacterial Biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.

    Article  CAS  PubMed  Google Scholar 

  139. Yu, Q., Wu, Z., & Chen, H. (2015). Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 16(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  140. Schild, H. G. (1992). Poly(N-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science, 17(2), 163–249.

    Article  CAS  Google Scholar 

  141. Ista, L. K., Mendez, S., & Lopez, G. P. (2010). Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling, 26(1–2), 111–118.

    Article  CAS  PubMed  Google Scholar 

  142. Cunliffe, D., Smart, C. A., Tsibouklis, J., Young, S., Alexander, C., & Vulfson, E. N. (2000). Bacterial adsorption to thermoresponsive polymer surfaces. Biotechnology Letters, 22(2), 141–145.

    Article  CAS  Google Scholar 

  143. Cunliffe, D., Carolina, D., Peters, V., Smith, J. R., & Alexander, C. (2003). Thermoresponsive surface-grafted poly(N-isopropylacrylamide) copolymers: Effect of phase transitions on protein and bacterial attachment. Langmuir, 19(7), 2888–2899.

    Article  CAS  Google Scholar 

  144. Yu, Q., Cho, J., Shivapooja, P., Ista, L. K., & López, G. P. (2013). Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Applied Materials & Interfaces, 5(19), 9295–9304.

    Article  CAS  Google Scholar 

  145. Luo, M., Bernards, M. T., Gang, C., Yu, Q., & Jiang, S. (2010). pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials, 31(10), 2919–2925.

    Article  CAS  Google Scholar 

  146. Makhathini, S. S., Omolo, C. A., Gannimani, R., Mocktar, C., & Govender, T. (2020). pH-Responsive micelles from an oleic acid tail and propionic acid heads dendritic amphiphile for the delivery of antibiotics. Journal of Pharmaceutical Sciences, 109(8), 2594–2606.

    Article  CAS  PubMed  Google Scholar 

  147. Yang, N., Zhu, M., Xu, G., Liu, N., & Yu, C. (2020). A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion. Journal of Materials Chemistry B, 8(17), 3908–3917.

    Article  CAS  PubMed  Google Scholar 

  148. Zhao, X., Liang, Y., Huang, Y., He, J., Han, Y., & Guo, B. (2020). Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Advanced Functional Materials, 30(17), 1910748.

    Article  CAS  Google Scholar 

  149. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319(5865), 939–943.

    Article  CAS  PubMed  Google Scholar 

  150. Rocca, J. D., Liu, D., & Lin, W. (2011). Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research, 44(10), 957–968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Imaz, I., Hernando, J., Ruiz-Molina, D., & Maspoch, D. (2010). Metal-organic spheres as functional systems for guest encapsulation. Angewandte Chemie (International ed. in English), 48(13), 2325–2329.

    Article  CAS  Google Scholar 

  152. Liang, K., Coghlan, C. J., Bell, S. G., Doonan, C., & Falcaro, P. (2016). Enzyme encapsulation in zeolitic imidazolate frameworks: A comparison between controlled co-precipitation and biomimetic mineralisation. Chemical Communications, 52(3), 473–476.

    Article  CAS  PubMed  Google Scholar 

  153. He, M., Yao, J., Liu, Q., Wang, K., Chen, F., & Wang, H. (2014). Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 184, 55–60.

    Article  CAS  Google Scholar 

  154. Song, Z., Wu, Y., Cao, Q., Wang, H., & Xiang, H. (2018). pH-responsive, light-triggered on-demand antibiotic release from functional metal-organic framework for bacterial infection combination therapy. Advanced Functional Materials, 28(23), 1800011.

    Article  CAS  Google Scholar 

  155. Tkhilaishvili, T., Winkler, T., Müller, M., Perka, C., & Trampuz, A. (2019). Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(1), e00924-e1019.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gu, J., Liu, X., Li, Y., Han, W., & Lei, L. (2012). A method for generation phage cocktail with great therapeutic potential. PLoS ONE, 7(3), e31698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Deresinski, S. (2009). Bacteriophage therapy: Exploiting smaller fleas. Clinical Infectious Diseases, 48(8), 1096–1101.

    Article  PubMed  Google Scholar 

  158. Fish, R., Kutter, E., Wheat, G., Blasdel, B., & Kuhl, S. (2018). Compassionate use of bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials. Methods in Molecular Biology, 1693, 159–170.

    Article  CAS  PubMed  Google Scholar 

  159. Kakasis, A., & Panitsa, G. (2019). Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International Journal of Antimicrobial Agents, 53(1), 16–21.

    Article  CAS  PubMed  Google Scholar 

  160. Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 8(3), 162–173.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., Melamed, S., Leavitt, A., Savidor, A., Albeck, S., & Amitai, G. (2017). Communication between viruses guides lysis-lysogeny decisions. Nature, 541(7638), 488–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Clark, J. R. (2015). Bacteriophage therapy: history and future prospects. Future Virology, 10(4), 449–461.

    Article  CAS  Google Scholar 

  163. Caflisch, K. M., & Patel, R. (2019). Implications of bacteriophage- and bacteriophage component-based therapies for the clinical microbiology laboratory. Journal of Clinical Microbiology, 57(8), e00229-19.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mirzaei, M. K., & Nilsson, A. S. (2015). Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE, 10(5), e0127606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Chaudhry, W. N., Concepción-Acevedo, J., Park, T., Andleeb, S., & Levin, B. R. (2017). Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE, 12(1), e0168615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Tanji, Y., Shimada, T., Yoichi, M., Miyanaga, K., Hori, K., & Unno, H. (2004). Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Applied Microbiology and Biotechnology, 64(2), 270–274.

    Article  CAS  PubMed  Google Scholar 

  167. Jault, P., Leclerc, T., Jennes, S., Pirnay, J. P., Que, Y. A., Resch, G., Rousseau, A. F., Ravat, F., Carsin, H., & Floch, R. L. (2018). Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. The Lancet Infectious Diseases, 19(1), 35–45.

    Article  PubMed  Google Scholar 

  168. Wang, Y., Beekman, J., Hew, J., Jackson, S., et al. (2017). Burn injury: Challenges and advances in burn wound healing, infection, pain and scarrin. Advanced Drug Delivery Reviews, 123(1), 3–17.

    PubMed  Google Scholar 

  169. Schmelcher, M., Donovan, D. M., & Loessner, M. J. (2012). Bacteriophage endolysins as novel antimicrobials. Future Microbiology, 7(10), 1147–1171.

    Article  CAS  PubMed  Google Scholar 

  170. Das, T., Krom, B. P., Mei, H., Busscher, H. J., & Sharma, P. K. (2011). DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 7(6), 2927–2935.

    Article  CAS  Google Scholar 

  171. Swartjes, J. J., Das, T., Sharifi, S., & Subbiahdoss, G. (2013). A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm. Advanced Functional Materials, 23(22), 2843–2849.

    Article  CAS  Google Scholar 

  172. Banerjee, I., Pangule, R. C., & Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6), 690–718.

    Article  CAS  PubMed  Google Scholar 

  173. Liu, T., Yan, S., Zhou, R., Zhang, X., & Luan, S. (2020). Self-adaptive antibacterial coating for universal polymeric substrates based on micrometer-scale hierarchical polymer brush system. ACS Applied Materials & Interfaces, 12(38), 42576–42585.

    Article  CAS  Google Scholar 

  174. Gu, P., Fan, N., Wang, Y., Wang, J., & Zhong, Q. (2019). Linear control of moisture permeability and anti-adhesion of bacteria in a broad temperature region realized by cross-linking thermoresponsive microgels onto cotton fabrics. ACS Applied Materials & Interfaces, 11(33), 30269–30277.

    Article  CAS  Google Scholar 

  175. Cirioni, O., Giacometti, A., Ghiselli, R., Acqua, G. D., Orlando, F., Mocchegiani, F., Silvestri, C., Licci, A., Saba, V., & Scalise, G. (2006). RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections. Journal of Infectious Diseases, 193(2), 180–186.

    Article  CAS  PubMed  Google Scholar 

  176. Naomi, B., Andrea, G., Oscar, C., Ghiselli, Y., & Mocchegiani, R. (2003). Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. Journal of Infectious Diseases, 187(4), 625–630.

    Article  Google Scholar 

  177. Stones, D. H., & Krachler, A. M. (2016). Against the tide: The role of bacterial adhesion in host colonization. Biochemical Society Transactions, 44(6), 1571–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. He, J., She, M., Liang, Y., & Guo, B. (2020). Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chemical Engineering Journal, 394, 124888.

    Article  CAS  Google Scholar 

  179. Drescher, K., Shen, Y., Bassler, B. L., & Stone, H. A. (2013). Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proceedings of the National Academy of Sciences, 110(11), 4345–4350.

    Article  CAS  Google Scholar 

  180. Brogden, K. A., Guthmiller, J. M., & Taylor, C. E. (2005). Human polymicrobial infections. Lancet, 365(9455), 253–255.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (51903176), Clinical Research Incubation Project (No. 2019HXFH006), and Special Fund for Nursing Discipline Development (No. HXHL19003) of Discipline Excellence Development 135 Project of West China Hospital of Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Hu or Yunbing Wang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Hu, X. & Wang, Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 63, 1103–1124 (2021). https://doi.org/10.1007/s12033-021-00371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00371-2

Keywords

Navigation