Skip to main content

Advertisement

Log in

Microbial Degradation of Forensic Samples of Biological Origin: Potential Threat to Human DNA Typing

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Modified from Pishchany and Skaar [94])

Similar content being viewed by others

References

  1. Abreu, A. E. S., & Vilar, O. M. (2017). Influence of composition and degradation on the shear strength of municipal solid waste. Waste Management, 68, 263–274.

    Article  CAS  Google Scholar 

  2. Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4, 117–139.

    Article  CAS  Google Scholar 

  3. Alaeddini, R. (2012). Forensic implications of PCR inhibition—A review. Forensic Science International Genetics, 6, 297–305.

    Article  CAS  Google Scholar 

  4. Alaeddini, R., Walsh, S. J., & Abbas, A. (2010). Forensic implications of genetic analyses from degraded DNA-a review. Forensic Science International Genetics, 4, 148–157.

    Article  CAS  Google Scholar 

  5. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). New York: Garland Science. ISBN 978-0849371615.

    Google Scholar 

  6. Ali, S. M. F., & Tanwir, F. (2012). Oral microbial habitat a dynamic entity. Journal of Oral Biology and Craniofacial Research, 2, 181–187.

    Article  Google Scholar 

  7. Al-Soud, W. A., & Radstrom, P. (2001). Purification and characterization of PCR-inhibitory components in blood cells. Journal of Clinical Microbiology, 39, 485–493.

    Article  CAS  Google Scholar 

  8. Alvarez, F. J., Ryman, K., Hooijmaijers, C., Bulone, V., & Ljungdahl, P. O. (2015). Diverse nitrogen sources in seminal fluid act in synergy to induce filamentous growth of Candida albicans. Applied and Environmental Microbiology, 81, 2770–2780.

    Article  CAS  Google Scholar 

  9. Anderson, M. T., Byerly, L., Apicella, M. A., & Seifert, H. S. (2016). Seminal plasma promotes Neisseria gonorrhoeae aggregation and biofilm formation. Journal of Bacteriology, 198, 2228–2235.

    Article  CAS  Google Scholar 

  10. Ansede, J. H., Friedman, R., & Yoch, D. C. (2001). Phylogenetic analysis of culturable dimethyl sulfide-producing bacteria from a spartina-dominated salt marsh and estuarine water. Applied and Environmental Microbiology, 67, 1210–1217.

    Article  CAS  Google Scholar 

  11. Anzai-Kanto, E., Hirata, M. H., Hirata, R. D. C., Nunes, F. D., Melani, R. F. H., & Oliveira, R. N. (2005). DNA extraction from human saliva deposited on skin and its use in forensic identification procedures. Brazilian Oral Research, 19, 216–222.

    Article  Google Scholar 

  12. Ashwini, N. K., Manjunath, M. R., & Kusuma, K. N. (2015). Evidentiary value and effects of contaminants on blood group factors in medico-legal grounds. International Archives of Integrated Medicine, 2, 68–72.

    Google Scholar 

  13. Atique, F. B., & Khalil, M. M. R. (2014). The bacterial contamination of allogeneic bone and emergence of multidrug-resistant bacteria in tissue bank. BioMed Research International. https://doi.org/10.1155/2014/430581.

    Google Scholar 

  14. Banfi, G., Salvagno, G. L., & Lippi, G. (2007). The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clinical Chemistry and Laboratory Medicine, 45, 565–576.

    Article  CAS  Google Scholar 

  15. Barbaro, A., Cormaci, P., & Barbaro, A. (2006). DNA typing from 15-year-old bloodstains. International Congress Series, 1288, 550–552.

    Article  CAS  Google Scholar 

  16. Beckett, S. M., Laughton, S. J., Pozza, L. D., McCowage, G. B., Marshall, G., Cohn, R. J., et al. (2008). Buccal swabs and treated cards: Methodological considerations for molecular epidemiologic studies examining pediatric populations. American Journal of Epidemiology, 167, 1260–1267.

    Article  Google Scholar 

  17. Berroteran, A., Perrone, M., Correnti, M., Cavazza, M. E., Tombazzi, C., Goncalvez, R., et al. (2002). Detection of Helicobacter pylori DNA in the oral cavity and gastroduodenal system of a Venezuelan population. Journal of Medical Microbiology, 51, 764–770.

    Article  CAS  Google Scholar 

  18. Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., et al. (2013). An estimation of the number of cells in the human body. Annals of Human Biology, 40, 463–471.

    Article  Google Scholar 

  19. Binte Atique, F. B., & Khalil, M. M. R. (2014). The bacterial contamination of allogeneic bone and emergence of multidrug-resistant bacteria in tissue bank. BioMed Research International. https://doi.org/10.1155/2014/430581.

    Google Scholar 

  20. Booth, T. J. (2016). An investigation into the relationship between funerary treatment and bacterial bioerosion in european archaeological human bone. Archaeometry, 58, 484–499.

    Article  CAS  Google Scholar 

  21. Brecher, M. E., & Hay, S. N. (2005). Bacterial contamination of blood components. Clinical Microbiology Reviews, 18, 195–201.

    Article  Google Scholar 

  22. Budowle, B., & van Daal, A. (2009). Extracting evidence from forensic DNA analyses: Future molecular biology directions. BioTechniques, 46, 339–350.

    Article  CAS  Google Scholar 

  23. Budowle, B., Schutzer, S. E., Burans, J. P., Beecher, D. J., Cebula, T. A., Chakraborty, R., et al. (2006). Quality sample collection, handling, and preservation for an effective microbial forensics program. Applied and Environmental Microbiology, 72, 6431–6438.

    Article  CAS  Google Scholar 

  24. Burg, A., Kahn, R., & Welch, K. (2011). DNA testing of sexual assault evidence: The laboratory perspective. Journal of Forensic Nurshing, 7, 145–152.

    Article  Google Scholar 

  25. Buschlediller, G., Zeronian, S. H., Pan, N., & Yoon, M. Y. (1994). Enzymatic hydrolysis of cotton, linen, ramie, and viscose rayon fabrics. Textile Research Journal, 64, 270–279.

    Article  CAS  Google Scholar 

  26. Butler, J. M., Buel, E., Crivellente, F., & McCord, B. R. (2004). Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis, 25, 1397–1412.

    Article  CAS  Google Scholar 

  27. Byun, R., Nadkarni, M. A., Chhour, K. L., Martin, F. E., Jacques, N. A., & Hunter, N. (2004). Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. Journal of Clinical Microbiology, 42, 3128–3136.

    Article  CAS  Google Scholar 

  28. Callewaert, C., De Maeseneire, E., Kerckhof, F. M., Verliefde, A., de Wiele, T. V., & Boon, N. (2014). Microbial odor profile of polyester and cotton clothes after a fitness session. Applied and Environmental Microbiology, 80, 6611–6619.

    Article  CAS  Google Scholar 

  29. Campos, P. F., Craig, O. E., Walker, G. T., Peacock, E., Willerslev, E., & Gilbert, M. T. P. (2012). DNA in ancient bone—Where is it located and how should we extract it? Annals of Anatomy, 194, 7–16.

    Article  CAS  Google Scholar 

  30. Canny, G. O., & McCormick, B. A. (2008). Bacteria in the Intestine, Helpful Residents or Enemies from Within? Infection and Immunity, 76, 3360–3373.

    Article  CAS  Google Scholar 

  31. Carrion, O., Curson, A. R. J., Kumaresan, D., Fu, Y., Lang, A. S., Mercade, E., et al. (2015). A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nature Communications, 6, 6579. https://doi.org/10.1038/ncomms7579.

    Article  CAS  Google Scholar 

  32. Casqueiro, J., Casqueiro, J., & Alves, C. (2012). Infections in patients with diabetes mellitus: A review of pathogenesis. Indian Journal of Endocrinology and Metabolism, 16, S27–S36.

    Article  Google Scholar 

  33. Chaturvedi, U., Tiwari, A. K., Ratta, B., Ravindra, P. V., Rajawat, Y. S., Palia, S. K., et al. (2008). Detection of canine adenoviral infections in urine and faces by the polymerase chain reaction. Journal of Virology Methods, 149, 260–263.

    Article  CAS  Google Scholar 

  34. Cogen, A. L., Nizet, V., & Gallo, R. L. (2008). Skin microbiota: A source of disease or defence? Brazilian Journal of Dermatology, 158, 442–455.

    Article  CAS  Google Scholar 

  35. Corrons, J. L. V., Briggs, C., Lopez, R. S., Albarede, S., de la Salle, B., Meatrii, Z. F., et al. (2014). Effect of EDTA-anticoagulated whole blood storage on cell morphology examination. A need for standardization. International Journal of Laboratory Hematology, 36, 222–226.

    Article  Google Scholar 

  36. Damann, F. E., Williams, D. E., & Layton, A. C. (2015). Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. Journal of Forensic Sciences, 60, 844–850.

    Article  Google Scholar 

  37. Damgaard, P. B., Margaryan, A., Schroeder, H., Orlando, L., Willerslev, E., & Allentoft, M. E. (2015). Improving access to endogenous DNA in ancient bones and teeth. Scientific Report, 5, 11184.

    Article  Google Scholar 

  38. De Marco, J. L., Inglis, M. C. V., & Felix, C. R. (2003). Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches broom of cocoa. Brazilian Journal of Microbiology, 34, 33–38.

    Article  Google Scholar 

  39. de Vos, V. M. (2015). Microbial biofilms and the human intestine microbiome. Biofilms and Microbiomes. https://doi.org/10.1038/npjbiofilms.2015.5.

    Google Scholar 

  40. Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C. R., Yu, W. H., et al. (2010). The human oral microbiome. Journal of Bacteriology, 192, 5002–5017.

    Article  CAS  Google Scholar 

  41. Diegoli, T. M. (2015). Forensic typing of short tandem repeat markers on the X and Y chromosomes. Forensic Science International: Genetics, 18, 140–151.

    Article  CAS  Google Scholar 

  42. Dissing, J., Søndervang, A., & Lund, S. (2010). Exploring the limits for the survival of DNA in blood stains. Journal of Forensic and Legal Medicine, 17, 392–396.

    Article  Google Scholar 

  43. Dolnık, V. (1999). DNA sequencing by capillary electrophoresis (review). Journal of Biochemical and Biophysical Methods, 41, 103–119.

    Article  Google Scholar 

  44. Enwuru, C. A., Iwalokun, B., Enwuru, V. N., Ezechi, O., & Oluwadun, A. (2016). The effect of presence of facultative bacteria species on semen and sperm quality of men seeking fertility care. African Journal of Urology, 22, 213–222.

    Article  Google Scholar 

  45. Erkmen, O., Bozoglu, T. F. (Eds.) (2016). Food preservation by reducing water activity. In Food microbiology: Principles and practices. Wiley: Chichester.

  46. Feng, X. (2009). Chemical and biochemical basis of cell-bone matrix interaction in health and disease. Current Chemical Biology, 3, 189–196.

    CAS  Google Scholar 

  47. Fleming, R. I., & Harbison, S. (2010). The use of bacteria for the identification of vaginal secretions. Forensic Science International Genetics, 4, 311–315.

    Article  CAS  Google Scholar 

  48. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of National Academy of Science USA, 104, 13780–13785.

    Article  CAS  Google Scholar 

  49. Ghatak, S., Muthukumaran, R. B., & Nachimuthu, S. K. (2013). A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. Journal of Biomolecular Techniques, 24, 224–231.

    Google Scholar 

  50. Gill, P., Jeffreys, A. J., & Werrett, D. J. (1985). Forensic application of DNA ‘fingerprints. Nature, 318, 577–579.

    Article  CAS  Google Scholar 

  51. Gingras, F., Paqueta, C., Bazineta, M., Grangera, D., Marcoux-Legaulta, K., Fiorilloa, M., et al. (2009). Biological and DNA evidence in 1000 sexual assault cases. Forensic Science International: Genetics Supplement Series, 2, 138–140.

    Google Scholar 

  52. Girish, K. L., Rahman, F. S., & Tippu, S. R. (2010). Dental DNA fingerprinting in identification of human remains. Journal of Forensic Dental Sciences, 2, 63–68.

    Article  Google Scholar 

  53. Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Review. Microbiology, 9, 244–253.

    CAS  Google Scholar 

  54. Harrington, D. J. (1996). Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infection and Immunity, 64, 1885–1891.

    CAS  Google Scholar 

  55. Hasan, N. A., Young, B. A., Minard-Smith, A. T., Saeed, K., Li, H., Heizer, E. M., et al. (2014). Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE. https://doi.org/10.1371/journal.pone.0097699.

    Google Scholar 

  56. Hirayama, K., Baranczewski, P., Akerlund, J. E., Midtvedt, T., Moller, L., & Rafter, J. (2000). Effects of human intestinal flora on mutagenicity of and DNA adduct formation from food and environmental mutagens. Carcinogenesis, 21, 2105–2111.

    Article  CAS  Google Scholar 

  57. Hoffmann, G. R. (1980). Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds. Mutation Research, 75, 63–129.

    Article  CAS  Google Scholar 

  58. Hoskins, L. C., & Boulding, E. T. (1976). Degradation of human blood group antigens in human colon ecosystems. The Journal of Clinical Investigation, 57, 63–73.

    Article  CAS  Google Scholar 

  59. Hyde, E. R., Haarmann, D. P., Lynne, A. M., Bucheli, S. R., & Petrosino, J. F. (2013). The living dead: Bacterial community structure of a cadaver at the onset and end of the bloat stage of Decomposition. PLoS ONE, 8(10), e77733. https://doi.org/10.1371/journal.pone.0077733.

    Article  CAS  Google Scholar 

  60. Inami, K., Mine, Y., Tatsuzaki, J., Mori, C., & Mochizuki, M. (2017). Isolation and characterization of antimutagenic components of Glycyrrhiza aspera against N-methyl-N-nitrosourea. Genes and Environment. https://doi.org/10.1186/s41021-016-0068-2.

    Google Scholar 

  61. Iwamura, E. S. M., Vieira, J. A. S., & Muñoz, D. R. (2004). Human identification and analysis of DNA in bones. Revista Do Hospital Das Clinicas, 59, 383–388.

    Article  Google Scholar 

  62. Jakubowska, J., Maciejewska, A., & Pawłowski, R. (2012). Comparison of three methods of DNA extraction from human bones with different degrees of degradation. International Journal of Legal Medicine, 126, 173–178.

    Article  Google Scholar 

  63. Jans, M. M. E. (2008). Microbial bioerosion of bone-a review. In M. Wisshak, & L. Tapanila (Eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series. https://doi.org/10.1007/978-3-540-77598-0_20, © Springer, Berlin 2008.

  64. Javurek, A. B., Spollen, W. G., Ali, A. M. M., Johnson, S. A., Lubahn, D. B., Bivens, N. J., et al. (2016). Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Scientific Reports. https://doi.org/10.1038/srep23027.

    Google Scholar 

  65. Jena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of BioScience, 37, 503–517.

    Article  CAS  Google Scholar 

  66. Jignal, P., Shaikh, M. G., & Darshan, M. (2014). Forensic conception: DNA typing of FTA spotted samples. Journal of Applied Biology and Biotechnology, 2, 21–29.

    CAS  Google Scholar 

  67. Jones, R. M., Mercante, J. W., & Neish, A. S. (2012). Reactive oxygen production induced by the gut microbiota: Pharmacotherapeutic implications. Current Medicinal Chemistry, 19, 1519–1529.

    Article  CAS  Google Scholar 

  68. Jorde, L. B., & Wooding, S. P. (2004). Genetic variation, classification and ‘race’. Nature Genetics, 36, S28–S33.

    Article  CAS  Google Scholar 

  69. Kang, J. G., Kim, S. H., & Ahn, T. Y. (2006). Bacterial diversity in the human saliva from different ages. Journal of Microbiology, 44, 572–576.

    CAS  Google Scholar 

  70. Killick, S. R., Leary, C., Trussell, J., & Guthrie, K. A. (2011). Sperm content of pre-ejaculatory fluid. Human Fertility, 14, 48–52.

    Article  Google Scholar 

  71. Kornberg, A., & Baker, T. (1992). DNA replication (2d ed., pp. 771–773). New York: W. H. Freeman and Company.

    Google Scholar 

  72. Kotabagi, R. B., Charati, S. C., & Jayachandar, D. (2005). Clinical autopsy vs medicolegal autopsy. Medical Journal Armed Forces India, 61, 258–263.

    Article  CAS  Google Scholar 

  73. Kulkarni, U. K., Gosavi, N. R., & Kulkarni, K. V. (2016). Effect of ageing and environment of north Maharashtra on ABO grouping substances of blood stain. Journal of Pharmaceutical, Chemical and Biological Sciences, 3, 608–611.

    Google Scholar 

  74. Leach, S. A., & Critchley, P. (1966). Bacterial degradation of glycoprotein sugars in human saliva. Nature. https://doi.org/10.1038/209506a0.

    Google Scholar 

  75. Lee, H. C., & Ladd, C. (2001). Preservation and collection of biological evidence. Croatian Medical Journal, 42, 225–228.

    CAS  Google Scholar 

  76. Liang, W., Li, Z., & Zhang, L. (2016). Research progress in forensic body fluids identification based on nucleic acid molecules. International Journal of Forensic Science, 1, 1–5.

    Google Scholar 

  77. Loreille, O. M., Diegoli, T. M., Irwin, J. A., Coble, M. D., & Parsons, T. J. (2007). High efficiency DNA extraction from bone by total demineralization. Forensic Science International Genetics, 1, 191–195.

    Article  Google Scholar 

  78. Ma, B., Forney, L. J., & Ravel, J. (2012). The vaginal microbiome: Rethinking health and diseases. Annual Review in Microbiology, 66, 371–389.

    Article  CAS  Google Scholar 

  79. Magalhães, T., Dinis-Oliveira, R. J., Silva, B., Corte-Real, F., & Vieira, D. N. (2015). Biological evidence management for DNA analysis in cases of sexual assault. The Scientific World Journal. https://doi.org/10.1155/2015/365674.

    Google Scholar 

  80. Maher, N., Dillon, H. K., Vermund, S. H., & Unnasch, T. R. (2001). Magnetic bead capture eliminates PCR inhibitors in samples collected from the air borne environment, permitting detection of Pneumocystis carinii DNA. Applied and Environmental Microbiology, 67, 449–452.

    Article  CAS  Google Scholar 

  81. Martín, R., Miquel, S., Ulmer, J., Kechaou, N., Langella, P., & Humarán, L. G. B. (2013). Role of commensal and probiotic bacteria in human health: A focus on inflammatory bowel disease. Microbial Cell Factories, 12, 71.

    Article  Google Scholar 

  82. McClintock, J. T. (2014). Forensic analysis of biological evidence: A laboratory guide for serological and DNA typing. CRC Press, 6000 Broken Sound Parkway NW Suite 300. pp. 176.

  83. McDonald, C., Allen, J., Brailsford, S., Roy, A., Ball, J., Moule, R., et al. (2017). Bacterial screening of platelet components by national health service blood and transplant, an effective risk reduction measure. Transfusion, 57, 1122–1131.

    Article  CAS  Google Scholar 

  84. Moretti, E., Capitani, S., Figura, N., Pammolli, A., Federico, M. G., Giannerini, V., et al. (2009). The presence of bacteria species in semen and sperm quality. Journal of Assisted Reproduction and Genetics, 26, 47–56.

    Article  Google Scholar 

  85. Nicholas, S., & Jakubovics, N. S. (2015). Saliva as the sole nutritional source in the development of multispecies communities in dental plaque. In T. Conway & P. Cohen (Eds.), Metabolism and bacterial pathogenesis (pp. 263–277). Washington, DC: ASM Press.

    Google Scholar 

  86. Nielsen, P. V., & Haasum, I. (1997). Packaging conditions hindering fungal growth on cheese. Scandinavian Dairy Information, 4, 22–25.

    Google Scholar 

  87. Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M., & Elliott, J. C. (2001). Affinity binding phenomena of DNA onto apatite crystals. Biomaterials, 22, 2459–2464.

    Article  CAS  Google Scholar 

  88. Opota, O., Jaton, K., & Greub, G. (2015). Microbial diagnosis of bloodstream infection: Towards molecular diagnosis directly from blood. Clinical Microbiology & Infection, 21, 323–331.

    Article  CAS  Google Scholar 

  89. Orgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2005). Microfibrillar structure of type I collagen in situ. Proceedings of National Academy of Science USA, 103, 9001–9005.

    Article  CAS  Google Scholar 

  90. Orgel, J. P. R. O., Miller, A., Irving, T. C., Fischetti, R. F., Hammersley, A. P., & Wess, T. J. (2001). The in situ supermolecular structure of type I collagen. Structure, 9, 1061–1069.

    Article  CAS  Google Scholar 

  91. Owen, D. H., & Katz, D. E. (2005). A review of the physical and chemical properties of human semen and the formulation of a semen simulant. Journal of Andrology, 26, 459–469.

    Article  CAS  Google Scholar 

  92. Pan, K., Deng, D., & Li, T. (1995). Preliminary studies on microbe-mediated N-nitrosamide synthesis. Chinese Journal of Preventive Medicine, 29, 222–224.

    CAS  Google Scholar 

  93. Phillips, M. L. (2008). Crime scene genetics: Transforming forensic science through molecular technologies. BioScience, 58, 484–489.

    Article  Google Scholar 

  94. Pishchany, G., & Skaar, E. P. (2012). Taste for blood: Hemoglobin as a nutrient source for pathogens. PLoS Pathogens, 8, e1002535.

    Article  CAS  Google Scholar 

  95. Putkonen, M. T., Palo, J. U., Cano, J. M., Hedman, M., & Sajantila, A. (2010). Factors affecting the STR amplification success in poorly preserved bone samples. Investigative Genetics. https://doi.org/10.1186/2041-2223-1-9.

    Google Scholar 

  96. Qin, J. J., Li, R. Q., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–70.

    Article  CAS  Google Scholar 

  97. Raffi, R. O., Moghissi, K. S., & Sacco, A. G. (1977). Proteins of human vaginal fluid. Fertility and Sterility, 28, 1345–1348.

    Article  CAS  Google Scholar 

  98. Rahman, N. A., Das, S., Chaudhari, V. A., Nandagopal, S., & Badhe, B. (2017). Blending of rodenticide and battery acid – a rare and fatal suicide mix. Egyptian Journal of Forensic Science, 7, 8.

    Article  Google Scholar 

  99. Ranneklev, S. B., & Baath, E. (2001). Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation. Applied and Environmental Microbiology, 67, 1116–1122.

    Article  CAS  Google Scholar 

  100. Raut, S., Sen, S. K., Kabir, N. A., Satpathy, S., & Raut, S. (2012). Isolation and characterization of protease producing bacteria from upper respiratory tract of wild chicken. Biotransformation, 8, 326–330.

    Google Scholar 

  101. Roewer, L. (2009). Y chromosome STR typing in crime casework. Forensic Science, Medicine and Pathology, 5, 77–84.

    Article  CAS  Google Scholar 

  102. Roewer, L. (2013). DNA fingerprinting in forensics: Past, present and future. Investigative Genetics, 4, 22.

    Article  CAS  Google Scholar 

  103. Russell, F. M., Biribo, S. S. N., Selvaraj, G., Oppedisano, F., Warren, S., Seduadua, A., et al. (2006). As a bacterial culture medium, citrated sheep blood agar is a practical alternative to citrated human blood agar in laboratories of developing countries. Journal of Clinical Microbiology, 44, 3346–3351.

    Article  CAS  Google Scholar 

  104. Saeid, A., Labuda, M., Chojnacka, K., & Gorecki, H. (2014). Valorization of bones to liquid phosphorus fertilizer by microbial solubilization. Waste Biomass Valorization, 5, 265–272.

    Article  CAS  Google Scholar 

  105. Saunders, C. W., Scheynius, A., & Heitman, J. (2012). Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathogens, 8, e1002701. https://doi.org/10.1371/journal.ppat.1002701.

    Article  CAS  Google Scholar 

  106. Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors- occurrence, properties and removal. Journal of Applied Microbiology, 113, 1014–1026.

    Article  CAS  Google Scholar 

  107. Sentamilselvi, G., Janaki, C., & Murugusundram, S. (2009). Trichomycoses. International Journal of Trichology, 1, 100–107.

    Article  CAS  Google Scholar 

  108. Shields, R. C., Mokhtar, N., Ford, M., Hall, M. J., Burgess, G., ElBadawey, M. R., et al. (2013). Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS ONE, 8, e55339. https://doi.org/10.1371/journal.pone.0055339.

    Article  CAS  Google Scholar 

  109. Shrivastava, P., Jain, T., & Trivedi, V. B. (2016). DNA fingerprinting: A substantial and imperative aid to forensic investigation. European Journal of Forensic Science, 3, 23–30.

    Article  Google Scholar 

  110. Skinner-Adams, T. S., Stack, C. M., Trenholme, K. R., Brown, C. L., Grembecka, J., Lowther, J., et al. (2010). Plasmodium falciparum neutral aminopeptidases: New targets for antimalarials. Trends in Biochemial Sciences, 35, 53–61.

    Article  CAS  Google Scholar 

  111. Slots, J., & Slots, H. (2000). Bacterial and viral pathogens in saliva: Disease relationship and infectious risk. Periodontology, 55, 48–69.

    Article  Google Scholar 

  112. Szostak-Kotowa, J. (2004). Biodeterioration of textiles. International Biodeterioration and Biodegradation, 53, 165–170.

    Article  CAS  Google Scholar 

  113. Tamariz, J., Voynarovska, K., Prinz, M., & Caragine, T. (2006). The application of ultraviolet irradiation to exogenous source of DNA in plasticware and water for the amplification of low copy number DNA. Journal of Forensic Science, 51, 790–794.

    Article  CAS  Google Scholar 

  114. Taoukis, P., Breene, W., & Labuza, T. P. (1988). Intermediate moisture foods. Advances in Cereal Science and Technology, 9, 91–128.

    Google Scholar 

  115. Tiwari, M. (2011). Science behind human saliva. Journal of Natural Science, Biology and Medicine, 2, 53–58.

    Article  Google Scholar 

  116. Tridico, S. R., Murray, D. C., Addison, J., Kirkbride, K. P., & Bunce, M. (2014). Metagenomic analyses of bacteria on human hairs: A qualitative assessment for applications in forensic science. Investigative Genetics. https://doi.org/10.1186/s13323-014-0016-5.

    Google Scholar 

  117. Tropeano, M., Vázquez, S., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., et al. (2013). Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic. Polish Polar Research. https://doi.org/10.2478/popore-2013-0014.

    Google Scholar 

  118. Tuli, H. S., Chaudhary, P., Beniwal, V., & Sharma, A. K. (2015). Microbial pigments as natural color sources: Current trends and future perspectives. Journal of Food Science and Technology, 52, 4669–4678.

    Article  CAS  Google Scholar 

  119. Ungria, M. C. A. D. (2003). Forensic DNA analysis in criminal investigations. Philippine Journal of Science, 132, 13–19.

    Google Scholar 

  120. van Belkum, A., Scherer, S., van Alphen, L., & Verbrugh, H. (1998). Short-sequence DNA repeats in prokaryotic genomes. Microbiology and Molecular Biology Reviews, 62, 275–293.

    Google Scholar 

  121. van Oorschot, R. A. H., Ballantyne, K. N., & Mitchell, R. J. (2010). Forensic trace DNA: A review. Investigative Genetics, 1, 14.

    Article  CAS  Google Scholar 

  122. Vanek, D., Saskova, L., Votrubova, J., & Emmerova, B. (2015). Factors influencing the reliability of DNA typing results for bone samples. Forensic Science International: Genetics Supplement Series, 5, e667–e668.

    Google Scholar 

  123. Varsha, (2006). DNA fingerprinting in the criminal justice system: An overview. DNA and Cell Biology, 25, 181–188.

    Article  CAS  Google Scholar 

  124. Vuichard, S., Borer, U., Bottinelli, M., Cossu, C., Malik, N., Meier, V., et al. (2011). Differential DNA extraction of challenging simulated sexual-assault samples: A Swiss collaborative study. Investigative Genetics. https://doi.org/10.1186/2041-2223-2-11.

    Google Scholar 

  125. Wain, J., Bay, P. V. B., Vinh, H., Duong, N. M., Diep, T. S., Walsh, A. L., et al. (2001). Quantitation of bacteria in bone marrow from patients with typhoid fever: Relationship between counts and clinical features. Journal of Clinical Microbiology, 39, 1571–1576.

    Article  CAS  Google Scholar 

  126. Wen, Q., Chen, Z., Zhao, Y., Zhang, H., & Feng, Y. (2010). Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. Journal of Hazardous Materials, 175, 955–959.

    Article  CAS  Google Scholar 

  127. Wickström, C., Herzberg, M. C., Beighton, D., & Svensäter, G. (2009). Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology, 155, 2866–2872.

    Article  CAS  Google Scholar 

  128. Wilson, M. L., & Weinstein, M. P. (1994). General principles in the laboratory detection of bacteremia and fungemia. Clinics in Laboratory Medicine, 14, 69–82.

    CAS  Google Scholar 

  129. Wu, Y., Ackerman, J. L., Chesler, D. A., Graham, L., Wang, Y., & Glimcher, M. J. (2003). Density of organic matrix of native mineralized bone measured by water and fat-suppressed proton projection MRI. Magnetic Resonance in Medicine, 50, 59–68.

    Article  Google Scholar 

  130. Wurmb-Schwark, N., Heinrich, A., Freudenberg, M., Gebuhr, M., & Schwark, T. (2008). The impact of DNA contamination of bone samples in forensic case analysis and anthropological research. Legal Medicine, 10, 125–130.

    Article  CAS  Google Scholar 

  131. Yang, C., Liu, Z., Tian, M., Xu, P., Li, B., Yang, Q., et al. (2016). Relationship between serum albumin levels and infections in newborn late preterm infants. Medical Science Monitor, 22, 92–98.

    Article  Google Scholar 

  132. Yeap, S. S., Beaumont, M., Bennett, A., Keating, N. A., White, D. A., & Hosking, D. J. (1998). Genetic and environmental factors affecting bone mineral density in large families. Postgraduate Medical Journal, 74, 349–354.

    Article  CAS  Google Scholar 

  133. Yu, F., Fu, R., Xie, Y., & Chen, W. (2015). Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge. International Journal of Environmental Research and Public Health, 12, 4214–4230.

    Article  Google Scholar 

  134. Zupanič Pajnič, I. (2016). Extraction of DNA from human skeletal material. In W. Goodwin (Ed.), Forensic DNA typing protocols 1420 (2nd ed.). New York: Springer. https://doi.org/10.1007/978-1-4939-3597-0_7.

    Google Scholar 

  135. Zupanič Pajnič, I., Gornjak Pogorelc, B., & Balažic, J. (2010). Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. International Journal of Legal Medicine, 124, 307–317.

    Article  Google Scholar 

  136. Zupanič Pajnič, I., Petaros, A., Balažic, J., & Geršak, K. (2016). Searching for the mother missed since the Second World War. Journal of Forensic and Legal Medicine, 44, 138–142.

    Article  Google Scholar 

  137. Zupanič Pajniča, I., Debska, M., Pogorelc, B. G., Mohorčič, B. G., Balažic, J., Zupanc, T., et al. (2016). Highly efficient automated extraction of DNA from old and contemporary skeletal remains. Journal of Forensic and Legal Medicine, 37, 78–86.

    Article  Google Scholar 

  138. Zurick, K. M., Qin, C., & Bernards, M. T. (2013). Mineralization induction effects of osteopontin, bone sialoprotein and dentin phosphoprotein on a biomimetic collagen substrate. Journal of Biomedical and Materials Research A, 101, 1571–1581.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, H.R., Das, S. Microbial Degradation of Forensic Samples of Biological Origin: Potential Threat to Human DNA Typing. Mol Biotechnol 60, 141–153 (2018). https://doi.org/10.1007/s12033-017-0052-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0052-5

Keywords

Navigation