Skip to main content
Log in

Over-Expression of AtPAP1 Transcriptional Factor Enhances Phenolic Acid Production in Transgenic Roots of Leonurus sibiricus L. and Their Biological Activities

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study examines the production of five phenolic acids (chlorogenic acid, neochlorogenic acid, ferulic acid, caffeic acid and p-coumaric acid) following over-expression of AtPAP1 transcription factor by four transgenic root clones of Leonurus sibiricus after Agrobacterium rhizogenes transformation. The AtPAP1 expression level was estimated by quantitative real-time PCR. High levels of phenolic acids were found in the transgenic roots of L. sibiricus and were determined by high-performance liquid chromatography–mass spectrometry analysis. Additionally, transgenic roots showed antimicrobial potential and cytotoxic activity on glioma cells in IV grade. Our results suggest that L. sibiricus transformed roots with AtPAP1 gene over-expression may represent a potential source of phenolic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dixon, R. A., & Strack, D. (2003). Phytochemistry meets genome analysis, and beyond. Phytochemistry, 62, 815–816.

    Article  CAS  Google Scholar 

  2. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15, 573.

    Article  CAS  Google Scholar 

  3. Stracke, R., Werber, M., & Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4, 447–456.

    Article  CAS  Google Scholar 

  4. Du, H., Zhang, L., Liu, L., Tang, X.-F., Yang, W.-J., Wu, Y.-M., et al. (2009). Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry, 74, 1–11.

    CAS  Google Scholar 

  5. Qiu, J., Sun, S., Luo, S., et al. (2014). Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Reports, 33, 669. https://doi.org/10.1007/s00299-014-1585-8.

    Article  CAS  Google Scholar 

  6. Gatica-Arias, A., Farag, M. A., Stanke, M., Matousek, J., Wessjohann, L., & Weber, G. (2012). Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. Plant Cell Reports, 31, 111–119.

    Article  CAS  Google Scholar 

  7. Zvi, M. M., Shklarman, E., Masci, T., Kalev, H., Debener, T., Shafir, S., et al. (2012). PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytologist, 195, 335–345.

    Article  Google Scholar 

  8. Zhang, Y., Yan, Y. P., & Wang, Z. Z. (2010). The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. Journal of Agriculture and Food Chemistry, 58, 12168–12175.

    Article  CAS  Google Scholar 

  9. Tasdemir, D., Wright, A. D., Sticher, O., Çalis, I., & Linden, A. (1995). Detailed 1Hand 13C-NMR investigations of some diterpenes isolated from Leonurus persicus. Journal of Natural Products, 58, 1543–1554.

    Article  CAS  Google Scholar 

  10. Ahmed, F., Islam, M. A., & Rahman, M. M. (2006). Antibacterial activity of Leonurus sibiricus aerial parts. Fitoterapia, 77, 316–317.

    Article  Google Scholar 

  11. Sayed, M. A., Haque, M. M., Roy, B., Hossain, S. M. J., & Das, S. R. (2012). Allelopathic effects of different extracts of honeyweed (Leonurus sibiricus) on seeds germination and seedlings growth of some selected vegetables. Journal of Natural Products, 5, 243–250.

    Google Scholar 

  12. Rahmatullah, M., Rahman, M. A., Haque, M. Z., Mollik, M. A. H., Miajee, Z. U. M., Begum, R., et al. (2010). A survey of medicinal plants used by folk medicinal practitioners of Station Purbo Para village of Jamalpur Sadar Upazila in Jamalpur district, Bangladesh. American-Eurasian Journal of Sustainable Agriculture, 4, 122–135.

    Google Scholar 

  13. Narukawa, Y., Niimura, A., Noguchi, H., Tamura, H., & Kiuchi, F. (2014). New diterpenoids with estrogen sulfotransferase inhibitory activity from Leonurus sibiricus L. Journal of Natural Medicines, 68, 125–131.

    Article  CAS  Google Scholar 

  14. Sitarek, P., Skała, E., Toma, M., Wielanek, M., Szemraj, J., Nieborowska- Skorska, M., et al. (2016). A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L. Tumour Biology, 37, 8753–8764.

    Article  CAS  Google Scholar 

  15. Sitarek, P., Skała, E., Toma, M., Wielanek, M., Szemraj, J., Skorski, T., et al. (2016). Transformed root extract of Leonurus sibiricus induces apoptosis through intrinsic and extrinsic pathways in various grades of human glioma cells. Pathology & Oncology Research. https://doi.org/10.1007/s12253-016-0170-6.

    Google Scholar 

  16. Höfgen, R., & Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16(20), 9877.

    Article  Google Scholar 

  17. Schenk, R. U., & Hildebrandt, A. C. (1972). Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50, 199–204.

    Article  CAS  Google Scholar 

  18. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321–4325.

    Article  CAS  Google Scholar 

  19. Skała, E., Kicel, A., Olszewska, M. A., Kiss, A. K., & Wysokińska, H. (2015). Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) Iljin for the production of biomass and caffeic acid derivatives. BioMed Research International, 181098, 1–11.

    Google Scholar 

  20. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.

    Article  CAS  Google Scholar 

  21. Sitarek, P., Rijo, P., Garcia, C., Skała, E., Kalemba, D., Białas, A. J., et al. (2017). Chemical composition antibacterial, anti-inflammatory, antioxidant and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. Oxidative Medicine and Cellular Longevity, 7384061, 1–12. https://doi.org/10.1155/2017/7384061.

    Article  Google Scholar 

  22. Wayne, P. A. (2015). Performance standards for antimicrobial susceptibility testing: Twenty fifth international supplement M100-S25. Wayne: Clinical and Laboratory Standards Institute.

    Google Scholar 

  23. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  24. Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. Plant Cell, 1, 37–52.

    Article  CAS  Google Scholar 

  25. Coen, E. S., & Meyerowitz, E. M. (1991). The war of the whorls: Genetic interactions controlling flower development. Nature, 353, 31–37.

    Article  CAS  Google Scholar 

  26. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139, 5–17.

    Article  CAS  Google Scholar 

  27. Huggett, J., Dheda, K., Bustin, S., & Zumla, A. (2005). Real-time RT-PCR normalisation; strategies and considerations. Genes and Immunity, 6, 279–284.

    Article  CAS  Google Scholar 

  28. Chervoneva, I., Li, Y., Schulz, S., Croker, S., Wilson, C., et al. (2010). Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinformatics, 11, 253.

    Article  Google Scholar 

  29. Kirik, V., Kolle, K., Misera, S., & Baumlein, H. (1998). Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. The Plant Journal, 13, 729–742.

    Article  CAS  Google Scholar 

  30. Yanhui, C., Xiaoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., et al. (2006). The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60, 107–124.

    Article  Google Scholar 

  31. Matus, J. T., Aquea, F., & Arce-Johnson, P. (2008). Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology, 8, 83.

    Article  Google Scholar 

  32. Howles, P. A., Sewalt, V., Paiva, N. L., Elkind, Y., Bate, N. J., Lamb, C., et al. (1996). Overexpression of l-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiology, 112, 1617–1624.

    Article  CAS  Google Scholar 

  33. Luo, J., Butelli, E., Hill, L., Parr, A., Niggeweg, R., Bailey, P., et al. (2008). AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. The Plant Journal, 56, 316–326.

    Article  CAS  Google Scholar 

  34. Anh Tuan, P., Yeon Kwon, D., Lee, S., Arasu, M. V., Al-Dhabi, N. A., Park, N., et al. (2014). Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1. International Journal of Molecular Sciences, 15, 14743–14752. https://doi.org/10.3390/ijms150814743.

    Article  Google Scholar 

  35. Elomaa, P., Uimari, A., Mehto, M., Albert, V. A., Laitinen, R. A., & Teeri, T. H. (2003). Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein–protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiology, 133, 1831–1842.

    Article  CAS  Google Scholar 

  36. Qiu, J., Gao, F., Shen, G., Li, C., Han, X., Zhao, Q., et al. (2013). Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS ONE, 8(8), e70665. https://doi.org/10.1371/journal.pone.0070665.

    Article  CAS  Google Scholar 

  37. Cetin-Karaca, H., & Newman, M. C. (2015). Antimicrobial efficacy of natural phenolic compounds against gram positive foodborne pathogens. Journal of Food Research, 4(6), 14–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Sitarek.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitarek, P., Kowalczyk, T., Rijo, P. et al. Over-Expression of AtPAP1 Transcriptional Factor Enhances Phenolic Acid Production in Transgenic Roots of Leonurus sibiricus L. and Their Biological Activities. Mol Biotechnol 60, 74–82 (2018). https://doi.org/10.1007/s12033-017-0048-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-0048-1

Keywords

Navigation