Skip to main content

Advertisement

Log in

Aromatic Surfactant as Aggregating Agent for Aptamer-Gold Nanoparticle-Based Detection of Plasmodium Lactate Dehydrogenase

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A novel ssDNA aptamer (P38), with a 40 mer random region flanked by primer-binding sites on both sides, targeting Plasmodium falciparum lactate dehydrogenase (PfLDH) has been developed through systematic evolution of ligands by exponential enrichment (SELEX), including counter SELEX against human lactate dehydrogenase A and B (hLDH A and B). The 2D structure of P38 shows the presence of three stem loops with a δG of −9.18 kcal/mol. EMSA studies on P38 complexes with the increasing concentration of PfLDH revealed a dissociation constant of 0.35 µM. P38 has been exploited for the quantitative detection of PfLDH using cationic surfactant-mediated aggregation of gold nanoparticles (16-nm diameter) as an optical probe. Among the three different cationic surfactants, characterized by different hydrocarbon tail groups, benzalkonium chloride (BCK) was found to be most efficient with a limit of detection of 281 ± 11 pM. This BCK-based approach with the novel highly selective aptamer provides simple and sensitive detection of PfLDH in the clinically relevant range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PfLDH:

Plasmodium falciparum lactate dehydrogenase

BCK:

Benzalkonium chloride

CTAB:

Cetyltrimethyl ammonium bromide

DDAB:

Didodecyl dimethyl ammonium bromide

AuNP:

Gold nanoparticle

TEM:

Transmission electron microscopy

ELISA:

Enzyme linked immunosorbent assay

PCR:

Polymerase chain reaction

RDT:

Rapid diagnostic test

SELEX:

Systematic evolution of ligands by exponential enrichment

EMSA:

Electrophoretic mobility shift assay

hLDH A:

Human lactate dehydrogenase chain A

hLDH B:

Human lactate dehydrogenase chain B

S20,w :

Sedimentation coefficient corrected for the viscosity and density of the solvent relative to that of water at 20 °C

LOD:

Limit of detection

RT:

Room temperature

NAD:

Nicotinamide adenine dinucleotide

APAD:

3-Acetylpyridine adenine dinucleotide

References

  1. Choi, S., Beeler, A. B., Pradhan, A., Watkins, E. B., Rimoldi, J. M., Tekwani, B., & Avery, M. A. (2007). Generation of oxamic acid libraries antimalarials and inhibitors of Plasmodium falciparum lactate dehydrogenase. Journal of Combinatorial Chemistry, 9, 292–300.

    Article  CAS  Google Scholar 

  2. Chanda, P., Hamainza, B., Mulenga, S., Chalwe, V., Msiska, C., & Chizema-Kawesha, E. (2009). Early results of integrated malaria control and implications for the management of fever in under-five children at a peripheral health facility: A case study of Chongwe rural health centre in Zambia. Malaria Journal, 8, 49.

    Article  Google Scholar 

  3. Chiodini, P. L., Bowers, K., Jorgensen, P., Barnwell, J. W., Grady, K. K., Luchavez, J., et al. (2007). The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 331–337.

    Article  CAS  Google Scholar 

  4. Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818–822.

    Article  CAS  Google Scholar 

  5. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), 505–510.

    Article  CAS  Google Scholar 

  6. Cho, E. J., Lee, J. W., & Ellington, A. D. (2009). Applications of aptamers as sensors. Annual Review of Analytical Chemistry, 2, 241–264.

    Article  CAS  Google Scholar 

  7. Smith, E. J., Griffin, K. D., Leny, K. J., Hagen, A. J., Chávez, L. J., & Kelley-Loughnane, N. (2014). Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta, 121, 247–255.

    Article  CAS  Google Scholar 

  8. Song, M. K., Cho, M., Jo, H., Min, K., Jeon, H. S., Kim, T., et al. (2011). Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Analytical Biochemistry, 415, 175–181.

    Article  CAS  Google Scholar 

  9. Chávez, L. J., MacCuspie, I. R., Stone, O. M., & Kelley-Loughnane, N. (2012). Colorimetric detection with aptamer–gold nanoparticle conjugates: effect of aptamer length on response. Journal of Nanoparticle Research, 14, 1166.

    Article  Google Scholar 

  10. Xia, F., Zuo, X., Yang, R., Xiao, Y., Kang, D., Vallée-Bélisle, A., et al. (2010). Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. PNAS, 107, 10837–10841.

    Article  CAS  Google Scholar 

  11. Wu, Y., Zhan, S., Wang, F., He, L., Zhi, W., & Zhou, P. (2012). Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic (III) in aqueous solution. Analyst, 48(37), 4459–4461.

    CAS  Google Scholar 

  12. Wu, Y., Liu, L., Zhan, S., Wang, F., & Zhou, P. (2012). Ultrasensitive aptamer biosensor for arsenic (III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst, 137(18), 4171–4178.

    Article  CAS  Google Scholar 

  13. Jain, P., Chakma. B., Patra, S., & Goswami, G. (2014). Potential biomarkers and their applications for rapid and reliable detection of malaria. BioMed Research International. Article ID 852645. doi:10.1155/2014/852645

  14. Cheung, Y. W., Kwok, J., Law, A. W., Watt, R. M., Kotaka, M., & Tanner, J. A. (2013). Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. PNAS, 110(40), 15967–15972.

    Article  CAS  Google Scholar 

  15. Dirkzwager, R. M., Kinghorn, A. B., Richards, J. S., & Tanner, J. A. (2015). APTEC: Aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria. Chemical Communications, 51, 4697.

    Article  CAS  Google Scholar 

  16. Lee, S., Song, K. M., Jeon, W., Jo, H., Shim, Y. B., & Ban, C. (2012). A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosensors and Bioelectronics, 35, 291–296.

    Article  CAS  Google Scholar 

  17. Lee, S., Manjunatha, H. D., Jeon, W., & Ban, C. (2014). Cationic surfactant-based colorimetric detection of plasmodium lactate dehydrogenase, a biomarker for Malaria, using the specific DNA aptamer. Plos One, 9(7), e100847.

    Article  Google Scholar 

  18. Jeon, W., Lee, S., Manjunatha, D. H., & Ban, C. (2013). A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Analytical Biochemistry, 439(2013), 11–16.

    Article  CAS  Google Scholar 

  19. Bereczky, S., Martensson, A., Gil, J. P., & Farnert, A. (2005). Short report: Rapid DNA extraction form archive blood spots on filter paper for genotyping of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene, 72(3), 249–251.

    Google Scholar 

  20. Chung, C. T., Suzanne, L., Niemela, L. S., & Miller, H. R. (1989). One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences USA, 86, 2172–2175.

    Article  CAS  Google Scholar 

  21. Schuck, P. (2000). Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophysical Journal, 78, 1606–1619.

    Article  CAS  Google Scholar 

  22. Laue, T. M., Shah, B. D., Ridgeway, T. M., & Pelletier, S. L. (1992). Analytical ultracentrifugation in biochemistry and polymer science (pp. 90–125). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  23. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415.

    Article  CAS  Google Scholar 

  24. Turkevich, J., Stevenson, P. C., & Hillier, J. A. (1951). Study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  25. Kim, Y. S., Kim, J. H., Kim, I. A., Lee, S. J., Jurng, J., & Gu, M. B. (2010). A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosensors and Bioelectronics, 26, 1644–1649.

    Article  CAS  Google Scholar 

  26. Tanford, C. (1961). Physical chemistry of macromolecules. New York: Wiley.

    Google Scholar 

  27. Pesce, A., Fondy, P. T., Stolzenbach, F., Castillo, F., & Kaplan, O. N. (1967). The comparative enzymology of lactic dehydrogenases. Journal of Biological Chemistry, 242(9), 2151–2167.

    CAS  Google Scholar 

  28. Sabato, D. G., & Kaplan, O. N. (1964). The denaturation of lactic dehydrogenases: I. The effect of sodium dodecyl sulfate. Journal of Biological Chemistry, 239, 438–443.

    Google Scholar 

  29. Chaikuad, A., Fairweather, V., Conners, R., Joseph-Horne, T., Turgut-Balik, D., & Brady, L. R. (2005). Structure of lactate dehydrogenase from plasmodium vivax: complexes with NADH and APADH. Biochemistry, 44, 16221–16228.

    Article  CAS  Google Scholar 

  30. Matsudaira, P. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Biological Chemistry, 262(21), 10035–10038.

    CAS  Google Scholar 

  31. Western blotting handbook, GE healthcare, Life sciences. https://promo.gelifesciences.com/gl/WESTERNBLOTTING/misc/28999897ABWBHANDBOOK.pdf

  32. Heffler, M., Walters, D. R., & Kugel, F. J. (2012). Using electrophoretic mobility shift assays to measure equilibrium dissociation constants: GAL4-p53 binding DNA as a model system. Biochemistry and Molecular Biology Education, 40(6), 383–387.

    Article  CAS  Google Scholar 

  33. Vesell, S. E. (1965). Formation of human lactate dehydrogenase isozyme patterns in vitro. PNAS, 54, 111–117.

    Article  CAS  Google Scholar 

  34. Li, H., & Rothberg, L. (2004). Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. PNAS, 101, 14036–14039.

    Article  CAS  Google Scholar 

  35. Cross, J., & Singer, J. E. (1994). Cationic surfactants (Vol. 53). Boca Raton: CRC Press.

    Google Scholar 

  36. Smith, K. D., & Korgel, A. B. (2008). The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 24(3), 644–649.

    Article  CAS  Google Scholar 

  37. Moon, Y. S., Kusunose, T., & Sekino, T. (2009). CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution. Materials Letter, 63, 2038–2040.

    Article  CAS  Google Scholar 

  38. Liu, X., & Abbott, L. N. (2010). Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant. The Journal of Physical Chemistry, 114, 15554–15564.

    Article  CAS  Google Scholar 

  39. He, L., Luo, Y., Zhi, W., Wu, Y., & Zhou, P. (2013). A colorimetric aptamer biosensor based on gold nanoparticles for the ultrasensitive and specific detection of tetracycline in milk. Australian Journal of Chemistry, 66(4), 485–490.

    Article  CAS  Google Scholar 

  40. Martin, S. K., Rajasekariah, G. H., Awinda, G., Waitumbi, J., & Kifude, C. (2009). Unified parasite lactate dehydrogenase and histidine-rich protein ELISA for quantification of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene, 80(4), 516–522.

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial assistance of the Department of Biotechnology, India. We thank Dr. J. Mahanta and Dr. P. K. Mohapatra from the Regional medical research centre, ICMR, Dibrugarh for providing the blood spots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Goswami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Chakma, B., Singh, N.K. et al. Aromatic Surfactant as Aggregating Agent for Aptamer-Gold Nanoparticle-Based Detection of Plasmodium Lactate Dehydrogenase. Mol Biotechnol 58, 497–508 (2016). https://doi.org/10.1007/s12033-016-9946-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9946-x

Keywords

Navigation