Skip to main content
Log in

A New Member of Family 11 Polysaccharide Lyase, Rhamnogalacturonan Lyase (CtRGLf) from Clostridium thermocellum

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable, alkaline rhamnogalacturonan lyase (RG lyase) CtRGLf, of family 11 polysaccharide lyase from Clostridium thermocellum was cloned, expressed, purified and biochemically characterised. Both, the full-length CtRGLf (80 kDa) protein and its truncated derivative CtRGL (63.9 kDa) were expressed as soluble proteins and displayed maximum activity against rhamnogalacturonan I (RG I). CtRGLf showed maximum activity at 70 °C, while CtRGL at 60 °C. Both enzymes showed maximum activity at pH 8.5. CtRGLf and CtRGL do not show higher activity on substrates with high β-d-galactopyranose (d-Galp) substitution, this catalytic property deviates from that of some earlier characterised RG lyases which prefer substrates with high d-Galp substitution. The enzyme activity of CtRGLf and CtRGL was enhanced by 1.5 and 1.3 fold, respectively, in the presence of 3 mM of Ca2+ ions. The TLC analysis of the degraded products of RG I, released by the action of CtRGLf and CtRGL revealed the production of RG oligosaccharides as major products confirming their endolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincken, J. P., Schols, H. A., & Oomen, R. J. (2003). If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology, 132, 1781–1789.

    Article  CAS  Google Scholar 

  2. Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. Phytochemistry, 57, 929–967.

    Article  CAS  Google Scholar 

  3. Matsunaga, T., Ishii, T., & Matsumoto, S. (2004). Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes and bryophytes. Implications for the evolution of vascular plants. Plant Physiology, 134, 339–351.

    Article  CAS  Google Scholar 

  4. O’Neill, M. A., Warrenfeltz, D., & Kates, K. (1996). Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by borate ester in vitro conditions for the formation and hydrolysis of the dimer. Journal of Biological Chemistry, 271, 22923–22930.

    Article  Google Scholar 

  5. Oomen, R. J., Doeswijk, V. H., & Bush, M. S. (2002). In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant J, 30, 403–413.

    Article  CAS  Google Scholar 

  6. Ochiai, A., Itoh, T., & Kawamata, A. (2007). Plant cell wall degradation by saprophytic Bacillus subtilis strains: gene clusters responsible for rhamnogalacturonande polymerization. Applied and Environment Microbiology, 73, 3803–3813.

    Article  CAS  Google Scholar 

  7. Pages, S., Valette, O., & Abdou, L. (2003). A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome. Journal of Bacteriology, 185, 4727–4733.

    Article  CAS  Google Scholar 

  8. McKie, V. A., Vincken, J. P., & Voragen, A. G. (2001). A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochemical Journal, 355, 167–177.

    Article  CAS  Google Scholar 

  9. Koshland, D. E. (1953). Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews, 28, 416–436.

    Article  CAS  Google Scholar 

  10. Moran, F. S., Nasuno, S., & Starr, M. P. (1968). Extracellular and intracellular polygalacturonic acid trans-eliminase of Erwinia carotovora. Archives of Biochemistry and Biophysics, 123, 298–306.

    Article  CAS  Google Scholar 

  11. Lombard, V., Golaconda, R. H., & Drula, E. (2014). The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490–D495.

    Article  CAS  Google Scholar 

  12. Koukiekolo, R., Cho, H. Y., & Kosugi, A. (2005). Degradation of corn fibre by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Applied and Environment Microbiology, 71, 3504–3511.

    Article  CAS  Google Scholar 

  13. Aachary, A. A., & Prapulla, S. G. (2011). Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety, 10, 2–16.

    Article  CAS  Google Scholar 

  14. Kashyap, D. R., Vohra, P. K., & Tewari, R. (2001). Application of pectinases in the commercial sector: a review. Bioresource Technology, 77, 215–227.

    Article  CAS  Google Scholar 

  15. Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.

    Article  CAS  Google Scholar 

  16. Lamed, R., Setter, E., & Bayer, E. A. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. Journal of Bacteriology, 156, 828–836.

    CAS  Google Scholar 

  17. Bayer, E. A., Morag, E., & Lamed, R. (1994). The cellulosome- a treasure-trove for biotechnology. Trends in Biotechnology, 12, 379–386.

    Article  CAS  Google Scholar 

  18. Das, S. P., Ravindran, R., & Ahmed, S. (2012). Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes. Applied Biochemistry and Biotechnology, 167, 1475–1488.

    Article  CAS  Google Scholar 

  19. Anbar, M., Gul, O., & Lamed, R. (2012). Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Applied and Environmental Microbiology, 78, 3458–3464.

    Article  CAS  Google Scholar 

  20. Silva, I. R., Jers, C., & Otten, H. (2014). Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations. Applied Microbiology and Biotechnology, 98, 4521–4531.

    Article  CAS  Google Scholar 

  21. Tartof, K. D., & Hobbs, C. A. (1987). Improved media for growing plasmid and cosmid clones. Bethesda Research Laboratories Focus, 9, 12.

    Google Scholar 

  22. Tanabe, H., Kobayashi, Y., Matuo, Y., Nishi, N., & Wada, F. (1984). Isolation and Fundamental Properties of endo-Pectate Lyase pl-Isozymes from Erwinia carotovora. Agricultural and Biological Chemistry, 48(8), 2113–2120.

    Article  CAS  Google Scholar 

  23. Zhang, Z., Xiao, Z., & Linhardt, R. J. (2009). Thin layer chromatography for the separation and analysis of acidic carbohydrates. Journal of Liquid Chromatography & Related Technologies, 32, 1711–1732.

    Article  CAS  Google Scholar 

  24. Perlman, D., & Halvorson, H. O. (1983). A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology, 167, 391–409.

    Article  CAS  Google Scholar 

  25. Iwai, M., Yamada, H., Ikemoto, T., Matsumoto, S., Fujiwara, D., Takenaka, S., & Sakamoto, T. (2015). Biochemical characterization and overexpression of an endo-rhamnogalacturonan lyase from Penicillium chrysogenum. Molecular Biotechnology, 57(6), 539–548.

    Article  CAS  Google Scholar 

  26. Li, S., Yang, X., Bao, M., Wu, Y., Yu, W., & Han, F. (2015). Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS microbiology letters, 362(10), fnv054.

    Article  Google Scholar 

  27. Ochiai, A., Itoh, T., Mikami, B., Hashimoto, W., & Murata, K. (2009). Structural determinants responsible for substrate recognition and mode of action in family 11 polysaccharide lyases. Journal of Biological Chemistry, 284(15), 10181–10189.

    Article  CAS  Google Scholar 

  28. Laatu, M., & Condemine, G. (2003). Rhamnogalacturonate lyase RhiE is secreted by the out system in Erwinia chrysanthemi. Journal of Bacteriology, 185, 1642–1649.

    Article  CAS  Google Scholar 

  29. Ames, G. L., Mimura, C. S., & Shyamala, V. (1990). Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: traffic ATPases. FEMS Microbiology Reviews, 6(4), 429–446.

    Article  CAS  Google Scholar 

  30. Olano, E., Rimbach, G. H., Gibson, G. R., & Rastall, R. A. (2002). Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Research, 23(1A), 341–346.

    Google Scholar 

  31. Cheng, H., Zhang, Z., & Leng, J. (2013). The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression. International Journal of Food Science and Nutrition, 64, 36–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Department of Science and Technology, Ministry of Science and Technology, New Delhi, Govt. of India and Fundação para a Ciência e a Tecnologia, Portugal for Indo-Portugal joint project grant (INT/Portugal/P-14/2013). Fellowship provided by Ministry of Human Resource Development, Govt. of India to AD is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, A., Fernandes, V.O., Dias, F.M.V. et al. A New Member of Family 11 Polysaccharide Lyase, Rhamnogalacturonan Lyase (CtRGLf) from Clostridium thermocellum . Mol Biotechnol 58, 232–240 (2016). https://doi.org/10.1007/s12033-016-9921-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9921-6

Keywords

Navigation