Skip to main content

Advertisement

Log in

Construction and Gene Expression Analysis of a Single-Stranded DNA Minivector Based on an Inverted Terminal Repeat of Adeno-Associated Virus

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The plasmid vectors currently used for nonviral gene transfer have the disadvantage of carrying a bacterial backbone and an antibiotic resistance gene, which may cause side effects. The adeno-associated virus (AAV) genome is a linear single-stranded DNA (ssDNA) molecule with palindromic inverted terminal repeat (ITR) sequences forming double-stranded DNA (dsDNA) hairpin (HP) structures at each end. Based on the AAV genome, we constructed an AAV-ITR ssDNA minivector that consists of a GFP expression cassette flanked by both ITR sequences of 125 nucleotides. The minivectors were produced by digestion of the parental plasmids followed by denaturation. The self-complementary inverted T-shaped HP structure of the minivector was automatically formed. The HEK 293T cells were transfected with the AAV-ITR ssDNA minivector, plasmid, and dsDNA expression cassette. The results showed that AAV-ITR ssDNA minivector had relatively low gene expression efficiency in vitro. However, we found that the GFP expression efficiency of the D sequence-deleted AAV-ITR ssDNA minivector was significantly increased and was similar to those obtained with the plasmid and dsDNA expression cassette. Our data suggest that the AAV-ITR ssDNA minivector may be a new type of gene expression vector for gene therapy besides the virus and plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

ITR:

Inverted terminal repeat

HP:

Hairpin

ssDNA:

Single-stranded DNA

dsDNA:

Double-stranded DNA

pUC57-minivector:

The plasmid consists of the double-stranded DNA expression cassette flanked by two AAV inverted terminal repeats (ITRs)

pUC57-minivector-EGFP:

The plasmid consists of the GFP expression cassette flanked by two AAV inverted terminal repeats (ITRs) (as the parent plasmid)

ds-minivector-EGFP:

The double-stranded GFP expression cassette

AAV-ITR ssDNA minivector:

The single-strand minivector consists of the DNA expression cassette and two palindromic ITR sequences

AAV-ITR-3′ m ssDNA minivector:

The minivector with a 3′-end mutation

AAV-D-ITR ssDNA minivector:

D sequence-deleted AAV-ITR ssDNA minivector

References

  1. Lyon, A. R., Sato, M., Hajjar, R. J., Samulski, R. J., & Harding, S. E. (2008). Gene therapy: Targeting the myocardium. Heart, 94, 89–99.

    Article  CAS  Google Scholar 

  2. Somia, N., & Verma, I. M. (2000). Gene therapy: Trials and tribulations. Nature Reviews Genetics, 1, 91–99.

    Article  CAS  Google Scholar 

  3. Couzin, J., & Kaiser, J. (2005). Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science, 307, 1028.

    Article  CAS  Google Scholar 

  4. Gao, X., Kim, K. S., & Liu, D. (2007). Nonviral gene delivery: What we know and what is next. The AAPS Journal, 9, 92–104.

    Article  Google Scholar 

  5. Gill, D. R., Pringle, I. A., & Hyde, S. C. (2009). Progress and prospects: The design and production of plasmid vectors. Gene Therapy, 16, 165–171.

    Article  CAS  Google Scholar 

  6. Schwartz, D. A., Quinn, T. J., Thorne, P. S., Sayeed, S., Yi, A. K., & Krieg, A. M. (1999). CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. Journal of Clinical Investigation, 100, 68–73.

    Article  Google Scholar 

  7. Jechlinger, W. (2006). Optimization and delivery of plasmid DNA for vaccination. Expert Review of Vaccines, 5, 803–825.

    Article  CAS  Google Scholar 

  8. Levy, M. S., O’Kennedy, R. D., Ayazi-Shamlou, P., & Dunnill, P. (2000). Biochemical engineering approaches to the challenges of producing pure plasmid DNA. Trends in Biotechnology, 18, 296–305.

    Article  CAS  Google Scholar 

  9. Lengsfeld, C. S., & Anchordoquy, T. J. (2002). Shear-induced degradation of plasmid DNA. Journal of Pharmaceutical Sciences, 91, 1581–1589.

    Article  CAS  Google Scholar 

  10. Jechlinger, W., Azimpour, T. C., Lubitz, W., & Mayrhofer, P. (2004). Minicircle DNA immobilized in bacterial ghosts: In vivo production of safe non-viral DNA delivery vehicles. Journal of Molecular Microbiology and Biotechnology, 8, 222–231.

    Article  Google Scholar 

  11. Chen, Z. Y., He, C. Y., Meuse, L., & Kay, M. A. (2004). Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Therapy, 11, 856–864.

    Article  CAS  Google Scholar 

  12. Chen, Z. Y., He, C. Y., & Kay, M. A. (2005). Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Human Gene Therapy, 16, 126–131.

    Article  CAS  Google Scholar 

  13. Darquet, A. M., Cameron, B., Wils, P., Scherman, D., & Crouzet, J. (1997). A new DNA vehicle for nonviral gene delivery: Supercoiled minicircle. Gene Therapy, 4, 1341–1349.

    Article  CAS  Google Scholar 

  14. McCarty, D. M. (2008). Self-complementary AAV vectors; advances and applications. Molecular Therapy, 16, 1648–1656.

    Article  CAS  Google Scholar 

  15. Penaud-Budloo, M., Le Guiner, C., Nowrouzi, A., Toromanoff, A., Chérel, Y., Chenuaud, P., et al. (2008). Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. Journal of Virology, 82, 7875–7885.

    Article  CAS  Google Scholar 

  16. Yiang, G. T., Chou, R. H., Chang, W. J., Wei, C. W., & Yu, Y. L. (2013). Long-term expression of rAAV2-hIL15 enhances immunoglobulin production and lymphokine-activated killer cell-mediated human glioblastoma cell death. Molecular and Clinical Oncology, 1, 321–325.

    Google Scholar 

  17. Ferrari, F. K., Samulski, T., Shenk, T., & Samulski, R. J. (1996). Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. Journal of Virology, 70, 3227–3234.

    CAS  Google Scholar 

  18. Fisher, K. J., Gao, G. P., Weitzman, M. D., DeMatteo, R., Burda, J. F., & Wilson, J. M. (1996). Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. Journal of Virology, 70, 520–532.

    CAS  Google Scholar 

  19. Duan, D., Sharma, P., Yang, J., Yue, Y., Dudus, L., Zhang, Y., et al. (1998). Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle. Journal of Virology, 72, 8568–8577.

    CAS  Google Scholar 

  20. Schnepp, B. C., Jensen, R. L., Chen, C. L., Johnson, P. R., & Clark, K. R. (2005). Characterization of adeno-associated virus genomes isolated from human tissues. Journal of Virology, 79, 14793–14803.

    Article  CAS  Google Scholar 

  21. Xiao, X., Li, J., & Samulski, R. J. (1996). Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. Journal of Virology, 70, 8098–8108.

    CAS  Google Scholar 

  22. Lusby, E., Fife, K. H., & Berns, K. I. (1980). Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. Journal of Virology, 34, 402–409.

    CAS  Google Scholar 

  23. Ni, T. H., Zhou, X. H., McCarty, D. M., Zolotukhin, I., & Muzyczka, N. (1994). In vitro replication of adeno-associated virus DNA. Journal of Virology, 68, 1128–1138.

    CAS  Google Scholar 

  24. Wang, X. S., Ponnazhagan, S., & Srivastava, A. (1995). Rescue and replication signals of the adeno-associated virus 2 genome. Journal of Molecular Biology, 250, 573–580.

    Article  CAS  Google Scholar 

  25. Qing, K., Khuntirat, B., Mah, C., Kube, D. M., Wang, X. S., Ponnazhagan, S., et al. (1998). Adeno-associated virus type 2-mediated gene transfer: correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo. Journal of Virology, 72, 1593–1599.

    CAS  Google Scholar 

  26. Zhong, L., Qing, K., Si, Y., Chen, L., Tan, M., & Srivastava, A. (2004). Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. Journal of Biological Chemistry, 279, 12714–12723.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81371670 and 3097880), the Natural Science Foundation of Jiangsu Province (Grant No. BK2012629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhang.

Additional information

Han Ping and Xiaomei Liu have contributed equally as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, H., Liu, X., Zhu, D. et al. Construction and Gene Expression Analysis of a Single-Stranded DNA Minivector Based on an Inverted Terminal Repeat of Adeno-Associated Virus. Mol Biotechnol 57, 382–390 (2015). https://doi.org/10.1007/s12033-014-9832-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9832-3

Keywords

Navigation