Skip to main content

Advertisement

Log in

Matrix-Assisted Refolding, Purification and Activity Assessment Using a ‘Form Invariant’ Assay for Matrix Metalloproteinase 2 (MMP2)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed ‘form invariant’ assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hrabec, E., Naduk, J., Strek, M., & Hrabec, Z. (2007). Type IV collagenases (MMP-2 and MMP-9) and their substrates–intracellular proteins, hormones, cytokines, chemokines and their receptors. Postepy Biochemii, 53, 37–45.

    CAS  Google Scholar 

  2. Shimokawa Ki, K., Katayama, M., Matsuda, Y., Takahashi, H., Hara, I., Sato, H., et al. (2002). Matrix metalloproteinase (MMP)-2 and MMP-9 activities in human seminal plasma. Molecular Human Reproduction, 8, 32–36.

    Article  Google Scholar 

  3. Nissinen, L., & Kahari, V. M. (2014). Matrix metalloproteinases in inflammation. Biochimica et Biophysica Acta, 1840, 2571–2580.

  4. Cauwe, B., Van den Steen, P. E., & Opdenakker, G. (2007). The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Critical Reviews in Biochemistry and Molecular Biology, 42, 113–185.

    Article  CAS  Google Scholar 

  5. Hadler-Olsen, E., Winberg, J. O., & Uhlin-Hansen, L. (2013). Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biology, 34, 2041–2051.

    Article  CAS  Google Scholar 

  6. Dufour, A., & Overall, C. M. (2013). Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends in Pharmacological Sciences, 34, 233–242.

    Article  CAS  Google Scholar 

  7. Hua, H., Li, M., Luo, T., Yin, Y., & Jiang, Y. (2011). Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cellular and Molecular Life Sciences, 68, 3853–3868.

    Article  CAS  Google Scholar 

  8. Koo, B. H., Kim, Y. H., Han, J. H., & Kim, D. S. (2012). Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation. Journal of Biological Chemistry, 287, 22643–22653.

    Article  CAS  Google Scholar 

  9. Ra, H. J., & Parks, W. C. (2007). Control of matrix metalloproteinase catalytic activity. Matrix Biology, 26, 587–596.

    Article  CAS  Google Scholar 

  10. Windsor, L. J., & Steele, D. L. (2001). Expression of recombinant matrix metalloproteinases in Escherichia coli. Methods in Molecular Biology, 151, 191–205.

    CAS  Google Scholar 

  11. Windsor, L. J., & Steele, D. L. (2010). Expression of recombinant matrix metalloproteinases in Escherichia coli. Methods in Molecular Biology, 622, 67–81.

    Article  CAS  Google Scholar 

  12. Massova, I., Kotra, L. P., Fridman, R., & Mobashery, S. (1998). Matrix metalloproteinases: structures, evolution, and diversification. The FASEB Journal, 12, 1075–1095.

    CAS  Google Scholar 

  13. Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562–573.

    Article  CAS  Google Scholar 

  14. Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta, 1803, 55–71.

    Article  CAS  Google Scholar 

  15. Steffensen, B., Hakkinen, L., & Larjava, H. (2001). Proteolytic events of wound-healing–coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Critical Reviews in Oral Biology and Medicine, 12, 373–398.

    Article  CAS  Google Scholar 

  16. Martignetti, J. A., Aqeel, A. A., Sewairi, W. A., Boumah, C. E., Kambouris, M., Mayouf, S. A., et al. (2001). Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genetics, 28, 261–265.

    Article  CAS  Google Scholar 

  17. Monaco, S., Gioia, M., Rodriguez, J., Fasciglione, G. F., Di Pierro, D., Lupidi, G., et al. (2007). Modulation of the proteolytic activity of matrix metalloproteinase-2 (gelatinase A) on fibrinogen. Biochemical Journal, 402, 503–513.

    Article  CAS  Google Scholar 

  18. Springman, E. B., Angleton, E. L., Birkedal-Hansen, H., & Van Wart, H. E. (1990). Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proceedings of the National Academy Sciences, 87, 364–368.

    Article  CAS  Google Scholar 

  19. Van Wart, H. E., & Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National Academy Sciences, 87, 5578–5582.

    Article  Google Scholar 

  20. Kupai, K., Szucs, G., Cseh, S., Hajdu, I., Csonka, C., Csont, T., et al. (2010). Matrix metalloproteinase activity assays: Importance of zymography. Journal of Pharmacological and Toxicological Methods, 61, 205–209.

    Article  CAS  Google Scholar 

  21. Hu, X., & Beeton, C. (2010). Detection of functional matrix metalloproteinases by zymography. Journal of visualized experiments. doi:10.3791/2445.

  22. Rabilloud, T., Vuillard, L., Gilly, C., & Lawrence, J. J. (1994). Silver-staining of proteins in polyacrylamide gels: a general overview. Cellular and Molecular Biology, 40, 57–75.

    CAS  Google Scholar 

  23. Turk, B. E., Huang, L. L., Piro, E. T., & Cantley, L. C. (2001). Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnology, 19, 661–667.

    Article  CAS  Google Scholar 

  24. Saini, D. K., Pant, N., Das, T. K., & Tyagi, J. S. (2002). Cloning, overexpression, purification, and matrix-assisted refolding of DevS (Rv 3132c) histidine protein kinase of mycobacterium tuberculosis. Protein Expression and Purification, 25, 203–208.

    Article  CAS  Google Scholar 

  25. Vallejo, L. F., & Rinas, U. (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial Cell Factories, 3, 11.

    Article  Google Scholar 

  26. Deleage, G., & Geourjon, C. (1993). An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum. Computer Applications in the Biosciences, 9, 197–199.

    CAS  Google Scholar 

  27. Sariahmetoglu, M., Crawford, B. D., Leon, H., Sawicka, J., Li, L., Ballermann, B. J., et al. (2007). Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. The FASEB Journal, 21, 2486–2495.

    Article  CAS  Google Scholar 

  28. Goncalves, A. N., Meschiari, C. A., Stetler-Stevenson, W. G., Nonato, M. C., Alves, C. P., Espreafico, E. M., et al. (2012). Expression of soluble and functional full-length human matrix metalloproteinase-2 in Escherichia coli. Journal of Biotechnology, 157, 20–24.

    Article  CAS  Google Scholar 

  29. Ikeda, M., Maekawa, R., Tanaka, H., Matsumoto, M., Takeda, Y., Tamura, Y., et al. (2000). Inhibition of gelatinolytic activity in tumor tissues by synthetic matrix metalloproteinase inhibitor: application of film in situ zymography. Clinical Cancer Research, 6, 3290–3296.

    CAS  Google Scholar 

  30. Murnane, M. J., Cai, J., Shuja, S., McAneny, D., Klepeis, V., & Willett, J. B. (2009). Active MMP-2 effectively identifies the presence of colorectal cancer. International Journal of Cancer, 125, 2893–2902.

    Article  CAS  Google Scholar 

  31. Rossello, A., Nuti, E., Orlandini, E., Carelli, P., Rapposelli, S., Macchia, M., et al. (2004). New N-arylsulfonyl-N-alkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP-2). Bioorganic Medicine Chemistry, 12, 2441–2450.

    Article  CAS  Google Scholar 

  32. Baker, A. H., Edwards, D. R., & Murphy, G. (2002). Metalloproteinase inhibitors: biological actions and therapeutic opportunities. Journal of Cell Science, 115, 3719–3727.

    Article  CAS  Google Scholar 

  33. Morrison, C. J., Butler, G. S., Bigg, H. F., Roberts, C. R., Soloway, P. D., & Overall, C. M. (2001). Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. Journal of Biological Chemistry, 276, 47402–47410.

    Article  CAS  Google Scholar 

  34. Itoh, Y., Binner, S., & Nagase, H. (1995). Steps involved in activation of the complex of pro-matrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)-2 by 4-aminophenylmercuric acetate. Biochemical Journal, 308(Pt 2), 645–651.

    CAS  Google Scholar 

  35. Ye, Q. Z., Johnson, L. L., Yu, A. E., & Hupe, D. (1995). Reconstructed 19kDa catalytic domain of gelatinase A is an active proteinase. Biochemistry, 34, 4702–4708.

    Article  CAS  Google Scholar 

  36. Cheng, D., Shen, Q., Nan, F., Qian, Z., & Ye, Q. Z. (2003). Purification and characterization of catalytic domains of gelatinase A with or without fibronectin insert for high-throughput inhibitor screening. Protein Expression and Purification, 27, 63–74.

    Article  CAS  Google Scholar 

  37. Nagase, H., Fields, C. G., & Fields, G. B. (1994). Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). Journal of Biological Chemistry, 269, 20952–20957.

    CAS  Google Scholar 

  38. Monaco, S., Sparano, V., Gioia, M., Sbardella, D., Di Pierro, D., Marini, S., et al. (2006). Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Science, 15, 2805–2815.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance to DKS from Department of Science and Technology (DST); Junior Research Fellowship to RJ from UGC; Assistance from proteomics facility, IISc for mass spectrometry and Gajendra, Department of Biochemistry, IISc for CD spectroscopy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Saini.

Additional information

Krishna Kumar Singh, Ruchi Jain, Harini Ramanan have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 kb)

Supplementary material 2 (TIFF 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.K., Jain, R., Ramanan, H. et al. Matrix-Assisted Refolding, Purification and Activity Assessment Using a ‘Form Invariant’ Assay for Matrix Metalloproteinase 2 (MMP2). Mol Biotechnol 56, 1121–1132 (2014). https://doi.org/10.1007/s12033-014-9792-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9792-7

Keywords

Navigation