Skip to main content

Advertisement

Log in

Molecular Cloning, Expression, and In Silico Structural Analysis of Guinea Pig IL-17

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete coding sequence of the guinea pig IL-17A gene (477 nucleotides; 159 amino acids) was subcloned into a prokaryotic expression vector (pET-30a) resulting in the expression of a 17 kDa recombinant guinea pig IL-17A protein which was confirmed by mass spectrometry analysis. Homology modeling of guinea pig IL-17A revealed that the three-dimensional structure resembles that of human IL-17A. The secondary structure predicted for this protein showed the presence of one extra helix in the N-terminal region. The expression profile of IL-17A was analyzed quantitatively in spleen, lymph node, and lung cells from BCG-vaccinated guinea pigs by real-time PCR. The guinea pig IL-17A cDNA and its recombinant protein will serve as valuable tools for molecular and immunological studies in the guinea pig model of pulmonary TB and other human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.H.O report. (2011). World Health Organization: Global tuberculosis control. Geneva: WHO.

  2. Anderson, P., & Doherty, T. M. (2005). The success and failure of BCG—implications for a novel tuberculosis vaccine. Nature Reviews Microbiology, 3, 656–662.

    Article  Google Scholar 

  3. Ottenhoff, T. H. M., & Kuaufmann, S. H. E. (2012). Vaccines against tuberculosis: Where are we and where do we need to go?. PLoS Pathogens, 8, e1002607.

    Article  CAS  Google Scholar 

  4. McMurray, D. N. (2001). Disease model: Pulmonary tuberculosis. Trends in Molecular Medicine, 7, 135–137.

    Article  CAS  Google Scholar 

  5. Turner, O. C., Basaraba, R. J., & Orme, I. M. (2003). Immunopathogensis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infection and Immunity, 71, 864–871.

    Article  CAS  Google Scholar 

  6. Ordway, D., Palanisamy, G., Henao-Tamayo, M., Smith, E. E., Shanley, C., Orme, I. M., et al. (2007). The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. Journal of Immunology, 179, 2532–2541.

    CAS  Google Scholar 

  7. Padilla-Carlin, D. J., McMurray, D. N., & Hickey, A. J. (2008). The guinea pig as a model of infectious diseases. Comparative Medicine, 58, 324–340.

    CAS  Google Scholar 

  8. Lyons, M. J., Yoshimura, T., & McMurray, D. N. (2002). Mycobacterium bovis BCG vaccination augments interleukin-8 mRNA expression and protein production in guinea pig alveolar macrophages infected with Mycobacterium tuberculosis. Infection and Immunity, 70, 5471–5478.

    Article  CAS  Google Scholar 

  9. Skwor, T. A., Cho, H., Cassidy, C., Yoshimura, T., & McMurray, D. N. (2004). Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages. Journal of Leukocytic Biology, 76, 1229–1239.

    Article  CAS  Google Scholar 

  10. Lasco, T. M., Cassone, L., Kamohara, H., Yoshimura, T., & McMurray, D. N. (2005). Evaluating the role of tumor necrosis factor-alpha in experimental pulmonary tuberculosis in the guinea pig. Tuberculosis (Edinb), 85, 245–258.

    Article  CAS  Google Scholar 

  11. Jeevan, A., McFarland, C. T., Yoshimura, T., Skwor, T., Cho, H., Lasco, T., et al. (2006). Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation. Infection and Immunity, 74, 213–224.

    Article  CAS  Google Scholar 

  12. Jeevan, A., Yoshimura, T., Ly, L. H., Dirisala, V. R., & McMurray, D. N. (2011). Cloning of guinea pig IL-4: Reduced IL-4 mRNA after vaccination or Mycobacterium tuberculosis infection. Tuberculosis (Edinb), 91, 47–56.

    Article  CAS  Google Scholar 

  13. Dirisala, V. R., Jeevan, A., Bix, G., Yoshimura, T., & McMurray, D. N. (2012). Molecular cloning and expression of the IL-10 gene from guinea pigs. Gene, 498, 120–127.

    Article  CAS  Google Scholar 

  14. Dirisala, V. R., Jeevan, A., Ly, L. H., & McMurray, D. N. (2013). Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig. Molecular Biotechnology, 54, 312–319.

    Article  CAS  Google Scholar 

  15. Zuniga, J., Torres-Garcia, D., Santos-Mendoza, T., Rodriguez-Reyna, T.S., Granados, J., & Yunis, E. J. (2012). Cellular and humoral mechanisms involved in the control of tuberculosis. Clinical and Developmental Immunology, Article ID 193923. doi:10.1155/2012/193923.

  16. Qiao, D., Yang, B. Y., Li, L., Ma, J. J., Zhang, X. L., Lao, S. H., et al. (2011). ESAT-6- and CFP-10-specific Th1, Th22 and Th17 cells in tuberculous pleurisy may contribute to the local immune response against Mycobacterium tuberculosis infection. Scandinavian Journal of Immunology, 73, 330–337.

    Article  CAS  Google Scholar 

  17. Yoshida, Y. O., Umemura, M., Yahagi, A., O’Brien, R. L., Ikuta, K., Kishihara, K., et al. (2010). Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. Journal of Immunology, 184, 4414–4422.

    Article  Google Scholar 

  18. Torrado, E., & Cooper, A. M. (2010). IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Reviews, 21, 455–462.

    Article  CAS  Google Scholar 

  19. Sutherland, J. S., Jong, B. C. D., Jeffries, D. J., Adetifa, I. M., & Ota, M. O. C. (2010). Production of TNF-α, IL-12(P40) and IL-17 can discriminate between active TB disease and latent infection in a West African cohort. PLoS One, 5, e12365.

    Article  Google Scholar 

  20. Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th-17 cells. Annual Reviews of Immunology, 27, 485–517.

    Article  CAS  Google Scholar 

  21. Lin, Y., Slight, S. R., & Khader, S. A. (2010). Th-17 cytokines and vaccine induced immunity. Seminars in Immunopathology, 32, 79–90.

    Article  CAS  Google Scholar 

  22. Iwakura, Y., Ishigame, H., Saijo, S., & Nakae, S. (2011). Functional specialization of interleukin-17 family members. Immunity, 25, 149–162.

    Article  Google Scholar 

  23. Jeevan, A., Yoshimura, T., Foster, G., & McMurray, D. N. (2002). Effect of Mycobacterium bovis BCG vaccination on interleukin-1 beta and RANTES mRNA expression in guinea pig cells exposed to attenuated and virulent mycobacteria. Infection and Immunity, 70, 1245–1253.

    Article  CAS  Google Scholar 

  24. Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203–210.

    Article  CAS  Google Scholar 

  25. Rio, D. C., Ares, M., Jr., Hannon, G. J., & Nilsen, T. W. (2010). Determining the yield and quality of purified RNA (Cold Spring Harbor Protocol). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  26. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  27. Shevchenko, A., Tomas, H., Hayil, J., Olsen, J. V., & Mann, M. (2007). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856–2860.

    Article  Google Scholar 

  28. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  29. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99.

    Article  CAS  Google Scholar 

  30. Gerhardt, S., Abbott, W. M., Hargreaves, D., Pauptit, R. A., Needham, M. R., Langham, C., et al. (2009). Structure of IL-17A in complex with a potent, fully human neutralizing antibody. Journal of Molecular Biology, 394, 905–921.

    Article  CAS  Google Scholar 

  31. García-Fruitós, E., Vázquez, E., Díez-Gil, C., Corchero, J. L., Seras-Franzoso, J., Ratera, I., et al. (2012). Bacterial inclusion bodies: Making gold from waste. Trends in Biotechnology, 30, 65–70.

    Article  Google Scholar 

  32. Jeevan, A., Formichella, C. R., Russell, K. E., & Dirisala, V. R. (2013). Guinea pig skin, a model for epidermal cellular and molecular changes induced by UVR in vivo and in vitro: Effects on Mycobacterium bovis Bacillus Calmette–Guèrin vaccination. Photochemistry and Photobiology, 89, 189–198.

    Article  CAS  Google Scholar 

  33. Kotobuki, Y., Tanemura, A., Yang, L., Itoi, S., Wataya-Kaneda, M., Murota, H., et al. (2012). Dysregulation of melanocyte function by Th17-related cytokines: Significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Research, 25, 219–230.

    Article  CAS  Google Scholar 

  34. Jovanovic, D. V., Di Battista, J. A., Martel, P. J., Jolicoeur, F. C., He, Y., Zhang, M., et al. (1998). IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. Journal of Immunology, 160, 3513–3521.

    CAS  Google Scholar 

  35. Laan, M., Cui, Z. H., Hoshino, H., Lötvall, J., Sjöstrand, M., Gruenert, D. C., et al. (2009). Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. Journal of Immunology, 162, 2347–2352.

    Google Scholar 

  36. Laan, M., Prause, O., Miyamoto, M., Sjostrand, M., Hytonen, A. M., Kaneko, T., et al. (2003). Role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-alpha. European Respiratory Journal, 21, 387–393.

    Article  CAS  Google Scholar 

  37. Witowski, J., Pawlaczyk, K., Breborowicz, A., Scheuren, A., Kuzlan-Pawlaczyk, M., Wisniewska, J., et al. (2000). IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. Journal of Immunology, 165, 5814–5821.

    CAS  Google Scholar 

  38. Jeevan, A., Majorov, K., Sawant, K., Cho, H., & McMurray, D. N. (2007). Lung macrophages from bacille Calmette–Guèrin-vaccinated guinea pigs suppress T cell proliferation but restrict intracellular growth of M. tuberculosis after recombinant guinea pig interferon-gamma activation. Clinical and Experimental Immunology, 149, 387–398.

    Article  CAS  Google Scholar 

  39. Jeevan, A., Bonilla, D. L., & McMurray, D. N. (2009). Expression of interferon-gamma and tumour necrosis factor-alpha messenger RNA does not correlate with protection in guinea pigs challenged with virulent Mycobacterium tuberculosis by the respiratory route. Immunology, 128, e296–e305.

    Article  Google Scholar 

  40. Martin, B., Hirota, K., Cua, D. J., Stockinger, B., & Veldhoen, M. (2009). Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity, 31, 321–330.

    Google Scholar 

  41. de Cassan, S. C., Pathan, A. A., Sander, C. R., Minassian, A., Rowland, R., Hill, A. V. S., et al. (2010). Investigating the induction of vaccine-induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG-immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clinical and Vaccine Immunology, 17, 1066–1073.

    Article  Google Scholar 

  42. Basile, J. I., Geffner, L. J., Romero, M. M., Balboa, L., Sabio, Y., García, C., et al. (2011). Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. Journal of Infectious Diseases, 204, 1054–1064.

    Article  CAS  Google Scholar 

  43. Ly, L. H., Jeevan, A., & McMurray, D. N. (2009). Neutralization of TNFα alters inflammation in guinea pig tuberculous pleuritis. Microbes and Infection, 11, 680–688.

    Article  CAS  Google Scholar 

  44. Khader, S., Bell, G. K., Pearl, J. E., Fountain, J. J., Rangel-Moreno, J., Cilley, G. E., et al. (2007). IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology, 8, 369–377.

    Article  CAS  Google Scholar 

  45. Ly, L. H., Russell, M. I., & McMurray, D. N. (2007). Microdissection of the cytokine milieu of pulmonary granulomas from tuberculous guinea pigs. Cellular Microbiology, 9, 1127–1136.

    Article  CAS  Google Scholar 

  46. Ly, L. H., Russell, M. I., & McMurray, D. N. (2008). Cytokine profiles in primary and secondary pulmonary granulomas of guinea pigs with tuberculosis. American Journal of Respiratory and Cellular Molecular Biology, 38, 455–462.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a subcontract from Colorado State University under NIH contract HHSN 266200400091c. The authors thank Dr. Larry Dangott of the Protein Chemistry Lab at Texas A&M University for mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya R. Dirisala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The superposition of the structure of IL-17A from Cavia porcellus predicted by modeler (blue), by Expasy server (green) and the human IL-17 which are used as templates in predicting the Cavia porcellus IL-17A structure (red) (PPTX 153 kb)

Supplementary Fig. 2

The front and back view of superimposition of guinea pig IL-17A from modeller (blue), Swiss-Prot (green), and the Human IL-17A crystal structure (red). The loop region has been highlighted in box marked in red for viewing the difference between the predicted models (PPTX 316 kb)

Supplementary Fig. 3

The front and back view of superimposition of guinea pig IL-17A and the human IL-17A crystal structure (PPTX 291 kb)

Supplementary Fig. 4

The front and back view of electrostatic surface charges for IL-17A from Cavia porcellus. Surface charges are calculated based on electrostatic potential which is color-ramped from negative (−)10kB/e (red) to positive (+)10 kB/e (Blue) (PPTX 906 kb)

Supplementary Fig. 5

The closer look of disulfide bond in the modeled IL-17A from Cavia porcellus (PPTX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirisala, V.R., Jeevan, A., Ramasamy, S.K. et al. Molecular Cloning, Expression, and In Silico Structural Analysis of Guinea Pig IL-17. Mol Biotechnol 55, 277–287 (2013). https://doi.org/10.1007/s12033-013-9679-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9679-z

Keywords

Navigation