Skip to main content
Log in

How the Nucleus and Mitochondria Communicate in Energy Production During Stress: Nuclear MtATP6, an Early-Stress Responsive Gene, Regulates the Mitochondrial F1F0-ATP Synthase Complex

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MtATP6:

Mitochondrial F1F0-ATP synthase 6-kDa subunit

qRT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

ABA:

Abscisic acid

AREB/ABF:

ABA-responsive element binding/ABA-responsive element binding factor

ABRE:

Abscisic acid response element

MYC:

Myelocytomatosis oncogene cellular homolog

MYB:

Myeloblastosis viral oncogene homolog

W-boxes:

WRKY-binding sites

CT :

Cycle threshold

HKT:

High affinity potassium transporter

SOS:

Salt overly sensitive

DRE:

Dehydration-responsive element

GTLs:

GT-element-binding proteins

CBF/DREB:

C-repeat binding factor/Dehydration-responsive element binding protein

AP2:

Apetala 2

ROS:

Reactive oxygen species

AOX:

Alternative oxidase

ABI4:

Abscisic acid insensitive 4

References

  1. Agarwal, B. (2011). A role for anions in ATP synthesis and its molecular mechanistic interpretation. Journal of Bioenergetics and Biomembranes, 43, 299–310.

    Article  CAS  Google Scholar 

  2. Alkhani, H., & Ghorbani, M. (1993). A contribution to the halophytic vegetation and flora of Iran. In H. Lieth & A. Al Masoom (Eds.), Towards the Rational Use of High Salinity Tolerance Plants (Vol. 1, pp. 35–44). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  3. Baena-González, E. (2010). Energy signaling in the regulation of gene expression during stress. Molecular Plant, 3, 300–313.

    Article  Google Scholar 

  4. Bayer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.

    Article  Google Scholar 

  5. Carrie, C., Giraud, E., & Whelan, J. (2009). Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. The Federation of European Biochemical Societies Journal, 276, 1187–1195.

    CAS  Google Scholar 

  6. Chandra, S. B., & Manatt, M. (2011). The effects of mitochondrial dysfunction in schizophrenia. The Journal of Medical Genetics and Genomics, 3, 84–89.

    Google Scholar 

  7. Colmer, T. D., Flowers, T. J., & Munns, R. (2006). Use of wild relatives to improve salt tolerance in wheat. The Journal of Experimental Botany, 57, 1059–1078.

    Article  CAS  Google Scholar 

  8. Deihimi, T., Niazi, A., Ebrahimi, M., Kajbaf, K., Fanaee, S., Bakhtiarizadeh, M. R., et al. (2012). Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed 4 genes and promoter architecture-case study: Dual roles of thaumatin like proteins in biotic and abiotic stresses. SpringerPlus, 1, 30.

    Article  Google Scholar 

  9. Dobrota, C. (2006). Energy dependant plant stress acclimation. Reviews in Environmental Science & Biotechnology, 5, 243–251.

    Article  CAS  Google Scholar 

  10. Doğan, M. (2011). Antioxidative and proline potentials as a protective mechanism in soybean plants under salinity stress. African Journal of Biotechnology, 10, 5972–5978.

    Google Scholar 

  11. Escobar, M. A., Franklin, K. A., Svensson, A. S., Salter, M. G., hitelam, G. C., & Rasmusson, A. G. (2004). Light regulation of the Arabidopsis respiratory chain: multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes. Plant Physiology, 136, 2710–2721.

    Article  CAS  Google Scholar 

  12. Eswaran, N., Parameswaran, S., Sathram, B., Anantharaman, B., Kumar, G. R. K., & Tangirala, S. J. (2010). Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnology, 10, 23.

    Article  Google Scholar 

  13. Flowers, T. J. (2004). Improving crop salt tolerance. The Journal of Experimental Botany, 55, 307–319.

    Article  CAS  Google Scholar 

  14. Galon, Y., Finkler, A., & Fromm, H. (2010). Calcium-regulated transcription in plants. Molecular Plant, 3, 653–669.

    Article  CAS  Google Scholar 

  15. Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays, 28, 1091–1101.

    Article  CAS  Google Scholar 

  16. Ghavami, F., Malboobi, M. A., Ghannadha, M. R., Yazdi-Samadi, B., Mozaffari, J., & Jafar-Aghaei, M. (2004). Evaluation of salt tolerance of Iranian wheat genotypes at germination and seedling stages. Iranian Journal of Agricultural Sciences, 35, 453–464.

    Google Scholar 

  17. Giraud, E., Ho, L. H. M., Clifton, R., et al. (2008). The absence of alternative oxidase 1a in Arabidopsis thaliana results in acute sensitivity to combined light and drought stress. Plant Physiology, 147, 595–610.

    Article  CAS  Google Scholar 

  18. Giraud, E., Van Aken, O., Ho, L. H. M., & Whelan, J. (2009). The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of alternative oxidase 1a. Plant Physiology, 150, 1286–1296.

    Article  CAS  Google Scholar 

  19. Gorham, J., Bristol, A., Young, E. M., & Wyn Jones, R. G. (1991). The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theoretical and Applied Genetics, 82, 729–736.

    Article  Google Scholar 

  20. Gorham, L., Hardy, C., Wyn Jones, R. G., Joppa, L. R., & Law, C. N. (1987). Chromosomal location of a K+/Na+ discrimination character in the genome D of wheat. Theoretical and Applied Genetics, 74, 584–588.

    Article  CAS  Google Scholar 

  21. Hamilton, C. A., Allin, G. G., & Gregory, J. T. (2001). Induction of vacuolar ATP synthase and mitochondrial ATP synthase by aluminum in an aluminum-resistant genotype of wheat. Plant Physiology, 125, 2068–2077.

    Article  CAS  Google Scholar 

  22. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  23. Heise, A., Lippok, B., Kirsch, C., & Hahlbrock, K. (2002). Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proceedings of the National Academy of Sciences of the United States of America, 99, 9049–9054.

    Article  CAS  Google Scholar 

  24. Jain, M., Nijhawan, A., Tyagi, A. K., & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research, 345, 646–651.

    Article  CAS  Google Scholar 

  25. Kong, Y., Zhou, G., & Wang, Y. (2001). Physiological characteristics and alternative respiratory pathway under salt stress in two wheat genotypes differing in salt tolerance. The Russian Journal of Plant Physiology, 48, 595–600.

    Article  CAS  Google Scholar 

  26. Langridge, P., Paltridge, N., & Fincher, G. (2006). Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics and Proteomics, 4, 34–354.

    Article  Google Scholar 

  27. Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative qRT-PCR data processing. BMC Bioinformatics, 6, 62.

    Article  Google Scholar 

  28. Laus, M. N., Flagella, Z., Trono, D., Soccio, M., Fonzo, N. D., & Pastore, D. (2007). Sea water stress affects mitochondrial proline oxidation but not alternative oxidase activity in durum wheat germinating seedlings, Water Saving in Mediterranean Agriculture and Future Research Needs proceedings of the International Conference. Valenzano (Italy), 2, 98–108.

    Google Scholar 

  29. Lescot, M., Déhais, P., Thijs, G., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.

    Article  CAS  Google Scholar 

  30. Li, S., Fu, Q., Chen, L., Huang, W., & Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermo tolerance. Planta, 233, 1237–1252.

    Article  CAS  Google Scholar 

  31. Meyer, E. H., Taylor, N. L., & Millar, A. H. (2008). Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis. Journal of Proteome Research, 7, 786–794.

    Article  CAS  Google Scholar 

  32. Michalecka, A. M., Svensson, A. S., Johansson, F. I., et al. (2003). Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiology, 133, 642–652.

    Article  CAS  Google Scholar 

  33. Moghadam, A. A., Ebrahimie, E., Taghavi, S. M., Niazi, A., & Djavaheri, M. (2012). Isolation and in silico functional analysis of MtATP6, a 6-kDa subunit of mitochondrial F1F0-ATP synthase, in response to abiotic stress. Genetic and Molecular, 11, 3547–3567.

    Article  CAS  Google Scholar 

  34. Munns, R., & Richards, R. A. (2007). Recent advances in breeding wheat for drought and salt stresses. In M. A. Jenks, et al. (Eds.), Advances in molecular breeding toward drought and salt tolerant crops (pp. 565–585). Berlin: Springer.

    Chapter  Google Scholar 

  35. Naghavi, M. R., Aghaei, M. J., Taleei, A. R., Omidi, M., Mozafari, J., & Hassani, M. E. (2009). Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genetic Resources and Crop Evolution, 56, 499–506.

    Article  CAS  Google Scholar 

  36. Park, H. C., Kim, M. L., Kang, Y. H., et al. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 135, 2150–2161.

    Article  CAS  Google Scholar 

  37. Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N., & Flagella, Z. (2007). Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: Durum wheat mitochondria. The Journal of Experimental Botany, 58, 195–210.

    Article  CAS  Google Scholar 

  38. Patnaik, D., & Khurana, P. (2001). Wheat biotechnology: A mini review. Electronic Journal of Biotechnology, 4, 0717–3458.

    Google Scholar 

  39. Priest, H. D., Filichkin, S. A., & Mockler, T. C. (2009). cis-Acting elements in plant cell signaling. Current Opinion in Plant Biology, 12, 643–649.

    Article  CAS  Google Scholar 

  40. Ramezani, A., Niazi, A., Moghadam, A. A., Zamani, B. M., Deihimi, T., Ebrahimi, M., Akhtardanesh, H., & Ebrahimie, E. (2012) Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. Molecular Biotechnology. doi:10.1007/s12033-012-9513-z.

  41. Raven, J. A. (1985). Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist, 101, 25–77.

    Article  CAS  Google Scholar 

  42. Ryan, M. T., & Hoogenraad, N. J. (2007). Mitochondrial–nuclear communications. Annual Review Biochemistry, 76, 701–722.

    Article  CAS  Google Scholar 

  43. Shah, S., Gorham, I., Forster, B. P., & Wyn Jones, R. G. (1987). Salt tolerance in the Triticeae: The contribution of the genome D to cation selectivity in hexaploid wheat. The Journal of Experimental Botany, 38, 254–269.

    Article  CAS  Google Scholar 

  44. Shen, Q., Zhang, P., & Ho, T. H. (1996). Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 8, 1107–1119.

    CAS  Google Scholar 

  45. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. The Journal of Experimental Botany, 58, 221–227.

    Article  CAS  Google Scholar 

  46. Soontharapirakkul, K., Promden, W., Yamada, N., et al. (2011). Halotolerant cyanobacterium aphanothece halophytica contains a Na+-dependent F1F0-ATP synthase with potential role in salt-stress tolerance. The Journal of Biological Chemistry, 286, 10169–10176.

    Article  CAS  Google Scholar 

  47. Tahmasebi, A., Aram, F., Ebrahimi, M., Mohammadi-Dehcheshmeh, M., & Ebrahimie, E. (2012). Genome-wide analysis of cytosolic and chloroplastic isoforms of glutathione reductase in plant cells. Plant Omics Journal, 5, 94–102.

    CAS  Google Scholar 

  48. Tariq, M., Nazar, N., Haider, A. B., & Saqlan, N. S. M. (2010). Comparative analysis of regulatory elements in different germin-like protein gene promoters. African Journal of Biotechnology, 9, 1871–1881.

    Google Scholar 

  49. Türkoglu, N., Erez, M. E., & Battal, P. (2011). Determination of physiological responses on hyacinth (Hyacinthus orientalis) plant exposed to different salt concentrations. African Journal of Biotechnology, 10, 6045–6051.

    Google Scholar 

  50. Valkoun, J. J. (2001). Wheat pre-breeding using wild progenitors. Euphytica, 119, 17–23.

    Article  Google Scholar 

  51. Van Aken, O., Giraud, E., Clifton, R., & Whelan, J. (2009). Alternative oxidase: A target and regulator of stress responses. Physiology Plant, 137, 354–361.

    Article  Google Scholar 

  52. Veen, B. W. (1980). Energy cost on ion transport. Genetic engineering of osmoregulation. In D. W. Rains, R. C. Valentine, & A. Hollaender (Eds.), Impact on plant productivity for food, chemicals and energy (pp. 187–195). New York: Plenum.

    Google Scholar 

  53. Voigt, C., Oster, U., Börnke, F., et al. (2010). In-depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the gun-type of plastid signaling. Physiology Plant, 138, 503–519.

    Article  CAS  Google Scholar 

  54. Xie, Z., Zou, H., Lei, G., et al. (2009). Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE, 4, e6898.

    Article  Google Scholar 

  55. Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends in Plant Science, 10, 88–94.

    Article  CAS  Google Scholar 

  56. Yoo, C. Y., Jin, J. B., Miura, K., Jin, Y. H., Gosney, M., Mickelbart, M. V., Bressan, R. A., & Hasegawa, P. M. (2007). Ca2+/CaM signaling through AtGTL1 mediates drought stress adaptation. Botany and Plant Biology Joint Congress, July 7–11, Chicago, Illinois, USA.

  57. Yu, B. S., & Sun, G. R. (1995). Preliminary study of several spring wheat varieties for resistance to Septoria diseases (Chinese). Crop Genetic Resources, 1, 27–29.

    Google Scholar 

  58. Zamani Babgohari, M., Niazi, A., Moghadam, A. A., Deihimi, T., & Ebrahimie, E. (2012). Genome-wide analysis of key salinity-tolerance transporters (HKTs) in wheat and wild wheat relatives (A and D genomes). In Vitro Cellular and Developmental Biology-Plant. doi:10.1007/s11627-012-9478-4.

  59. Zhang, X. X., & Liu, S. K. (2003). Identification and characterization of mitochondrial ATP synthase small subunit gene in rice (Oryza sativa L.). Molecular Plant Breeding, 1, 605–612.

    CAS  Google Scholar 

  60. Zhang, X., Liu, S., & Takano, T. (2008). Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnology Letters, 30, 1289–1294.

    Article  Google Scholar 

  61. Zhang, X., Takano, T., & Liu, S. K. (2006). Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L.). The Journal of Experimental Botany, 57, 193–200.

    Article  CAS  Google Scholar 

  62. Zhou, D. X. (1999). Regulatory mechanism of plant gene transcription by GTLs and GT-factors. Trends Plant Science, 4, 210–214.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Institute of Biotechnology for supporting this research and the Bioinformatics Research Group in the College of Agriculture (Shiraz University). We thank Dr. Mehrabi (Ilam University) for kindly supplying seeds of wild genotypes for this study. We thank Dr. Manijeh Mohammadi Dehcheshmah for his help in performing the qRT-PCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eemaeil Ebrahimie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data 1 (DOCX 163 kb)

Supplementary data 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, A.A., Ebrahimie, E., Taghavi, S.M. et al. How the Nucleus and Mitochondria Communicate in Energy Production During Stress: Nuclear MtATP6, an Early-Stress Responsive Gene, Regulates the Mitochondrial F1F0-ATP Synthase Complex. Mol Biotechnol 54, 756–769 (2013). https://doi.org/10.1007/s12033-012-9624-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9624-6

Keywords

Navigation