Skip to main content
Log in

Molecular Cloning, Characterization, and Expression Analysis of a Novel Gene Encoding l-Cysteine Desulfhydrase from Brassica napus

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

l-Cysteine desulfhydrase (DES; EC 4.4.1.1) is the most important enzyme that catalyzes the decomposition of l-cysteine to pyruvate, ammonia, and hydrogen sulfide (H2S), the latter of which has recently been recognized as the third gasotransmitter for multiple signaling events in plants. Previous results showed the existence of DES activity in Brassica napus; however, the gene encoding the true DES protein has not been characterized yet. Here, a rapeseed DES gene was isolated and sequenced. It shared high homology with Arabidopsis DES1, and encodes a polypeptide with 323 amino acids of 34.5 kDa. Subsequently, prokaryotic expression and biochemical analysis demonstrated that this protein predominantly catalyzes the breakdown of l-cysteine with the side reaction of l-cysteine synthesis [O-acetyl-l-serine(thiol)lyase activity], and was designated as BnDES1. Corresponding analysis of structural features was also in agreement with the above proposition. Molecular evidence showed that BnDES1 mRNA was widely expressed, but with the higher expression level in flowers. Further results showed that the BnDES1 transcripts were differentially up-regulated by several plant growth regulators and chemicals. Overall, the above findings provide evidence showing that BnDES1 is a potentially important enzyme responsible for the H2S production, and may play an important role in plant growth regulators and chemical stimuli responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hell, R. (1997). Molecular physiology of plant sulfur metabolism. Planta, 202, 138–148.

    Article  CAS  Google Scholar 

  2. Rennenberg, H. (1984). The fate of excess sulfur in higher plants. Annual Review of Plant Physiology, 35, 121–153.

    Article  CAS  Google Scholar 

  3. Hawkesford, M. J., & De Kok, L. J. (2006). Managing sulphur metabolism in plants. Plant, Cell and Environment, 29, 382–395.

    Article  CAS  Google Scholar 

  4. Schmidt, A., & Jäger, K. (1992). Open questions about sulfur metabolism in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 325–349.

    Article  CAS  Google Scholar 

  5. Bonner, E. R., Cahoon, R. E., Knapke, S. M., & Jez, J. M. (2005). Molecular basis of cysteine biosynthesis in plants: Structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. Journal of Biological Chemistry, 280, 38803–38813.

    Article  CAS  Google Scholar 

  6. Gruhlke, M. C. H., & Slusarenko, A. J. (2012). The biology of reactive sulfur species (RSS). Plant Physiology and Biochemistry, 59, 98–107.

    Article  CAS  Google Scholar 

  7. Noctor, G., Arisi, A. M., Jouanin, L., Kunert, K. J., Rennenberg, H., & Foyer, C. H. (1998). Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49, 623–647.

    CAS  Google Scholar 

  8. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., et al. (2012). Glutathione in plants: An integrated overview. Plant, Cell and Environment, 35, 454–484.

    Article  CAS  Google Scholar 

  9. Nappi, A. J., & Vass, E. (1997). Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. Biochimica et Biophysica Acta, 1336, 295–302.

    Article  CAS  Google Scholar 

  10. Park, S., & Imlay, J. A. (2003). High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. Journal of Bacteriology, 185, 1942–1950.

    Article  CAS  Google Scholar 

  11. Wirtz, M., Beard, K. F., Lee, C. P., Boltz, A., Schwarzlaender, M., Fuchs, C., et al. (2012). Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. Journal of Biological Chemistry, 287, 27941–27947.

    Article  CAS  Google Scholar 

  12. Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., et al. (2008). Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell, 20, 168–185.

    Article  CAS  Google Scholar 

  13. Ikegami, F., & Murakoshi, I. (1994). Enzymic synthesis of non-protein β-substituted alanines and some higher homologues in plants. Phytochemistry, 35, 1089–1104.

    Article  CAS  Google Scholar 

  14. Hatzfeld, Y., Maruyama, A., Schmidt, A., Noji, M., Ishizawa, K., & Saito, K. (2000). β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiology, 123, 1163–1172.

    Article  CAS  Google Scholar 

  15. Takahashi, H., & Saito, K. (1996). Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiology, 112, 273–280.

    Article  CAS  Google Scholar 

  16. Barroso, C., Romero, L. C., Cejudo, F. J., Vega, J. M., & Gotor, C. (1999). Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Molecular Biology, 40, 729–736.

    Article  CAS  Google Scholar 

  17. Schäfer, H. J., Haag-Kerwer, A., & Rausch, T. (1998). cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: Evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Molecular Biology, 37, 89–97.

    Article  Google Scholar 

  18. Domínguez-Solís, J. R., Gutiérrez-Alcalá, G., Romero, L. C., & Gotor, C. (2001). The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. Journal of Biological Chemistry, 276, 9297–9302.

    Article  Google Scholar 

  19. Noji, M., Saito, M., Nakamura, M., Aono, M., Saji, H., & Saito, K. (2001). Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiology, 126, 973–980.

    Article  CAS  Google Scholar 

  20. Harada, E., Choi, Y., Tsuchisaka, A., Obata, H., & Sano, H. (2001). Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Journal of Plant Physiology, 158, 655–661.

    Article  CAS  Google Scholar 

  21. Youssefian, S., Nakamura, M., Orudgev, E., & Kondo, N. (2001). Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiology, 126, 1001–1011.

    Article  CAS  Google Scholar 

  22. Lόpez-Martín, M. C., Becana, M., Romero, L. C., & Gotor, C. (2008). Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiology, 147, 562–572.

    Article  Google Scholar 

  23. Burandt, P., Schmidt, A., & Papenbrock, J. (2001). Cysteine synthesis and cysteine desulfuration in Arabidopsis plants at different developmental stages and light conditions. Plant Physiology and Biochemistry, 39, 861–870.

    Article  CAS  Google Scholar 

  24. Riemenschneider, A., Riedel, K., Hoefgen, R., Papenbrock, J., & Hesse, H. (2005). Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant metabolism. Plant Physiology, 137, 892–900.

    Article  CAS  Google Scholar 

  25. Papenbrock, J., Riemenschneider, A., Kamp, A., Schulz-Vogt, H. N., & Schmidt, A. (2007). Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants—from the field to the test tube and back. Plant Biology, 9, 582–588.

    Article  CAS  Google Scholar 

  26. Álvarez, C., Calo, L., Romero, L. C., García, I., & Gotor, C. (2010). An O-acetytlserine(thiol)lyase homolog with l-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiology, 152, 656–669.

    Article  Google Scholar 

  27. Álvarez, C., Bermúdez, M. A., Romero, L. C., Gotor, C., & García, I. (2012). Cysteine homeostasis plays an essential role in plant immunity. New Phytologist, 193, 165–177.

    Article  Google Scholar 

  28. Riemenschneider, A., Wegele, R., Schmidt, A., & Papenbrock, J. (2005). Isolation and characterization of a d-cysteine desulfhydrase protein from Arabidopsis thaliana. The FEBS Journal, 272, 1291–1304.

    Article  CAS  Google Scholar 

  29. Todorovic, B., & Glick, B. R. (2008). The interconversion of ACC deaminase and d-cysteine desulfhydrase by directed mutagenesis. Planta, 229, 193–205.

    Article  CAS  Google Scholar 

  30. Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., & Pei, Y. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 414, 481–486.

    Article  CAS  Google Scholar 

  31. Zhang, H., Tang, J., Liu, X., Wang, Y., Yu, W., Peng, W., et al. (2009). ydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51, 1086–1094.

    Article  CAS  Google Scholar 

  32. Wang, Y., Li, L., Cui, W., Xu, S., Shen, W., & Wang, R. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil, 351, 107–119.

    Article  CAS  Google Scholar 

  33. García-Mata, C., & Lamattina, L. (2010). Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytologist, 188, 977–984.

    Article  Google Scholar 

  34. Li, L., Wang, Y., & Shen, W. (2012). Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling. BioMetals, 25, 617–631.

    Article  CAS  Google Scholar 

  35. Bloem, E., Riemenschneider, A., Volker, J., Papenbrock, J., Schmidt, A., Salac, I., et al. (2004). Sulphur supply and infection with Pyrenopeziza brassicae influence l-cysteine desulphydrase activity in Brassica napus L. Journal of Experimental Botany, 55, 2305–2312.

    Article  CAS  Google Scholar 

  36. Cao, Z., Geng, B., Xu, S., Xuan, W., Nie, L., Shen, W., et al. (2011). BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. Journal of Experimental Botany, 62, 4675–4689.

    Article  CAS  Google Scholar 

  37. Siegel, M. (1965). A direct microdetermination for sulfide. Analytical Biochemistry, 11, 126–132.

    Article  CAS  Google Scholar 

  38. Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. The Biochemical Journal, 104, 627–633.

    CAS  Google Scholar 

  39. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  40. Xie, Y., Xu, S., Han, B., Wu, M., Yuan, X., Han, Y., et al. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant Journal, 66, 280–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Programme, Grant no 2011CB109300) and the Fundamental Research Funds for the Central Universities (Grant no. KYJ200912).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbiao Shen or Rongzhan Guan.

Additional information

Yanjie Xie and Diwen Lai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Lai, D., Mao, Y. et al. Molecular Cloning, Characterization, and Expression Analysis of a Novel Gene Encoding l-Cysteine Desulfhydrase from Brassica napus . Mol Biotechnol 54, 737–746 (2013). https://doi.org/10.1007/s12033-012-9621-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9621-9

Keywords

Navigation