Skip to main content
Log in

Functional Characterization of a Chrysanthemum dichrum Stress-Related Promoter

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A 1,474-bp stress-inducible CdDREBa promoter was identified from Chrysanthemum dichrum, revealing several candidate stress-related cis-acting elements (MYC-box, MYB site, GT-1, and W-box) within it. In Arabidopsis leaf tissues transformed with a CdDREBa promoter-β-glucuronidase (GUS) gene fusion, serially 5′-deleted CdDREBa promoters were differentially activated by cold and salinity. Histochemical and quantitative assays of GUS expression allowed us to localize a critical part of the promoter located between upstream 430 and 351 nt. This 80-bp fragment enhanced GUS expression under salinity stress when fused to −90/+8 CaMV 35S minimal promoter. Further promoter internal-deletion assays indicated that a low temperature-responsive element was located between positions −430 and −390, and a salinity inducible one between −385 and −351. Our results showed that there was a novel stress-related critical region except for the known cis-acting element (MYC-box, GT-1) in CdDREBa promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

DREB/CBF:

Dehydration-responsive element binding/C-repeat binding factor

TAIL-PCR:

Thermal asymmetric interlaced PCR

M-MLV:

Maloney marine leukemia virus

References

  1. Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6, 410–417.

    Article  CAS  Google Scholar 

  2. Tran, L. S., Nakashima, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Plant gene networks in osmotic stress response: from genes to regulatory networks. Methods in Enzymology, 428, 109–128.

    Article  CAS  Google Scholar 

  3. Niinemets, Ü., & Valladares, F. (2008). Environmental Tolerance. In J. Sven Erik & F. Brian (Eds.), Encyclopedia of ecology (pp. 1370–1376). Oxford: Academic Press.

    Chapter  Google Scholar 

  4. Li, R., Zhang, J., Wei, J., Wang, H., Wang, Y., & Ma, R. (2009). Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress. Progress in Natural Science, 19, 667–676.

    Article  Google Scholar 

  5. Liu, J. G., Zhang, Z., Qin, Q. L., et al. (2007). Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnology Letters, 29, 165–173.

    Article  CAS  Google Scholar 

  6. Novillo, F., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America, 104, 21002–21007.

    Article  CAS  Google Scholar 

  7. Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., & Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67, 589–602.

    Article  CAS  Google Scholar 

  8. Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell & Physiology, 45, 346–350.

    Article  CAS  Google Scholar 

  9. Gutha, L. R., & Reddy, A. R. (2008). Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Molecular Biology, 68, 533–555.

    Article  CAS  Google Scholar 

  10. Sun, X., Dong, J. H., Chen, M., et al. (2008). Isolation and regulative region analysis of promoter of stress-related gene GmDREB3 from Soybean. Acta Agronomica Sinica, 34, 1475–1479.

    Article  CAS  Google Scholar 

  11. Yang, W., Liu, X. D., Chi, X. J., et al. (2011). Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 233, 219–229.

    Article  CAS  Google Scholar 

  12. Zhang, Y., Yin, H., Li, D., Zhu, W., & Li, Q. (2008). Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Reports, 27, 585–592.

    Article  Google Scholar 

  13. Park, H. C., Kim, M. L., Kang, Y. H., et al. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 Box that interacts with a GT-1-like transcription factor. Plant Physiology, 135, 2150–2161.

    Article  CAS  Google Scholar 

  14. Zheng, H., Lin, S., Zhang, Q., Lei, Y., Hou, L., & Zhang, Z. (2010). Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar. Plant Cell Reports, 29, 449–460.

    Article  CAS  Google Scholar 

  15. Lang, Z., Zhou, P., Yu, J., Ao, G., & Zhao, Q. (2008). Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta, 227, 387–396.

    Article  CAS  Google Scholar 

  16. Swapna, L., Khurana, R., Vijaya Kumar, S., Tyagi, A., & Rao, K. (2011). Pollen-specific expression of Oryza sativa indica pollen allergen gene (OSIPA) promoter in rice and Arabidopsis transgenic systems. Molecular Biotechnology, 48, 49–59.

    Article  CAS  Google Scholar 

  17. Lamacchia, C., Shewry, P. R., Di Fonzo, N., et al. (2001). Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. Journal of Experimental Botany, 52, 243–250.

    Article  CAS  Google Scholar 

  18. Andriankaja, A., Boisson-Dernier, A., Frances, L., et al. (2007). AP2-ERF transcription factors mediate nod factor dependent MtENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell, 19, 2866–2885.

    Article  CAS  Google Scholar 

  19. Chen, M., Xu, Z., Xia, L., et al. (2009). Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). Journal of Experimental Botany, 60, 121–135.

    Article  CAS  Google Scholar 

  20. Srivasta, A., Mehta, S., Lindlof, A., & Bhargava, S. (2010). Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression. Plant Signal & Behavior, 5, 775–784.

    Article  Google Scholar 

  21. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17, 287–291.

    Article  CAS  Google Scholar 

  22. Hong, B., Tong, Z., Ma, N., et al. (2006). Heterologous expression of AtDREB1A improved drought- and salt-tolerance in Chrysanthemum. Science in China Series C: Life Sciences, 36, 223–231.

    Google Scholar 

  23. Kimura, S., Chikagawa, Y., Kato, M., Maeda, K., & Ozeki, Y. (2008). Upregulation of the promoter activity of the carrot (Daucus carota) phenylalanine ammonia-lyase gene (DcPAL3) is caused by new members of the transcriptional regulatory proteins, DcERF1 and DcERF2, which bind to the GCC-box homolog and act as an activator to the DcPAL3 promoter. Journal of Plant Research, 121, 499–508.

    Article  CAS  Google Scholar 

  24. Chinnusamy, V., Ohta, M., Kanrar, S., et al. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development, 17, 1043–1054.

    Article  CAS  Google Scholar 

  25. Agarwal, M., Hao, Y., Kapoor, A., et al. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry, 281, 37636–37645.

    Article  CAS  Google Scholar 

  26. Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C., & Zhu, J. K. (2001). FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes and Development, 15, 1971–1984.

    Article  CAS  Google Scholar 

  27. Lee, B. H., Lee, H., Xiong, L., & Zhu, J. K. (2002). A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell, 14, 1235–1251.

    Article  CAS  Google Scholar 

  28. Guo, Y., Xiong, L., Ishitani, M., & Zhu, J. K. (2002). An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 99, 7786–7791.

    Article  CAS  Google Scholar 

  29. Zhu, J., Shi, H., Lee, B. H., et al. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 101, 9873–9878.

    Article  CAS  Google Scholar 

  30. Zhu, J., Verslues, P. E., Zheng, X., et al. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 9966–9971.

    Article  CAS  Google Scholar 

  31. Chen, S., Cui, X., Chen, Y., et al. (2011). CgDREBa transgenic chrysanthemum confers drought and salinity tolerance. Environmental and Experimental Botany. doi:10.1016/j.envexpbot.2011.06.007.

  32. Tong, Z., Hong, B., Yang, Y., et al. (2009). Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Molecular Biology, 71, 115–129.

    Article  CAS  Google Scholar 

  33. Yang, Y., Wu, J., Zhu, K., Liu, L., Chen, F., & Yu, D. (2009). Identification and characterization of two chrysanthemum (Dendronthema × moriforlium) DREB genes, belonging to the AP2/EREBP family. Molecular Biology Reporter, 36, 71–81.

    Article  CAS  Google Scholar 

  34. Gawel, N., & Jarret, R. (1991). A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Molecular Biology Reporter, 9, 262–266.

    Article  CAS  Google Scholar 

  35. Liu, Y. G., & Whittier, R. F. (1995). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 25, 674–681.

    Article  CAS  Google Scholar 

  36. Weigel, D., & Glazebrook, J. (2006). Transformation of Agrobacterium using the freeze–thaw method. Cold Spring Harbor Protocols. doi:10.1101/pdb.prot4666.

  37. Bent, A. (2006). Arabidopsis thaliana floral dip transformation method. Methods in Molecular Biology, 343, 87–104.

    CAS  Google Scholar 

  38. Richard, J. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  Google Scholar 

  39. Deininger, P. (1992). Gus protocols: Using the gus gene as a reporter of gene expression. Analytical Biochemistry, 207, 356.

    Article  Google Scholar 

  40. Benfey, P. N., & Chua, N. H. (1990). The cauliflower mosaic virus 35S promoter: Combinatorial regulation of transcription in plants. Science, 250, 959–966.

    Article  CAS  Google Scholar 

  41. Hong, J., & Hwang, B. (2009). The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. Planta, 229, 249–259.

    Article  CAS  Google Scholar 

  42. Badawi, M., Reddy, Y. V., Agharbaoui, Z., et al. (2008). Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell & Physiology, 49, 1237–1249.

    Article  CAS  Google Scholar 

  43. Zarka, D. G., Vogel, J. T., Cook, D., & Thomashow, M. F. (2003). Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiology, 133, 910–918.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Program for Hi-Tech Research, Jiangsu, China (Grant No. BE2008302, BE2009317), and the National Natural Science Foundation of China (Grant No. 30872064, 31071820, 31071825), and the Fundamental Research Funds for the Central Universities (KYJ200907, KYZ201112). The Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-10-0492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Chen, S., Chen, F. et al. Functional Characterization of a Chrysanthemum dichrum Stress-Related Promoter. Mol Biotechnol 52, 161–169 (2012). https://doi.org/10.1007/s12033-011-9483-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9483-6

Keywords

Navigation