Skip to main content
Log in

Lactobacillus plantarum and Lactobacillus buchneri as Expression Systems: Evaluation of Different Origins of Replication for the Design of Suitable Shuttle Vectors

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The objectives of this study were to establish transformation protocols for Lactobacillus plantarum CD033 and Lactobacillus buchneri CD034, two industrial silage strains and to test the influence of selected origins of replication on plasmid copy number, plasmid stability, and plasmid incompatibility in these strains. Electro-transformation protocols were optimized by examination of the influence of different electroporation solutions and cell wall weakening agents on transformation efficiency. Using Lithium acetate as cell wall weakening agent, we could achieve transformation efficiencies of 8 × 104 transformants per 1 μg DNA for L. buchneri CD034 which is to our knowledge the highest described for this species up to now. In order to test feasibility of previously described origins of replication derived from Bacillus subtilis, L. plantarum, Lactococcus lactis, and two novel L. buchneri CD034 plasmids to drive replication in our two selected Lactobacillus strains, six shuttle vectors were constructed. Results indicate that, in terms of stable propagation and high gene copy numbers (up to 238 copies/chromosome), the most suitable origins of replication for the construction of expression vectors for the selected silage strains were the ones derived from the novel L. buchneri CD034 plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Giraffa, G., Chanishvili, N., & Widyastuti, Y. (2010). Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, 161, 480–487.

    Article  Google Scholar 

  2. Ladero, V., Ramos, A., Wiersma, A., Goffin, P., Schanck, A., Kleerebezem, M., et al. (2007). High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Applied and Environmental Microbiology, 73, 1864–1872.

    Article  CAS  Google Scholar 

  3. Rossi, F., Rudella, A., Marzotto, M., & Dellaglio, F. (2001). Vector-free cloning of a bacterial endo-1,4-beta-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Van Leeuwenhoek, 80, 139–147.

    Article  CAS  Google Scholar 

  4. Sharp, R., O’donnell, A. G., Gilbert, H. G., & Hazlewood, G. P. (1992). Growth and survival of genetically manipulated Lactobacillus plantarum in silage. Applied and Environmental Microbiology, 58, 2517–2522.

    CAS  Google Scholar 

  5. Helanto, M., Kiviharju, K., Leisola, M., & Nyyssölä, A. (2007). Metabolic engineering of Lactobacillus plantarum for production of L-ribulose. Applied and Environmental Microbiology, 73, 7083–7091.

    Article  CAS  Google Scholar 

  6. Holzer, M., Mayrhuber, E., Danner, H., & Braun, R. (2003). The role of Lactobacillus buchneri in forage preservation. Trends in Biotechnology, 21, 282–287.

    Article  CAS  Google Scholar 

  7. Ranjit, N. K., & Kung, L. (2000). The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 83, 526–535.

    Article  CAS  Google Scholar 

  8. Bron, P. A., & Kleerebezem, M. (2011). Engineering lactic acid bacteria for increased industrial functionality. Bioeng Bugs, 2, 80–87.

    Article  Google Scholar 

  9. Wels, M., Overmars, L., Francke, C., Kleerebezem, M., & Siezen, R. J. (2011). Reconstruction of the regulatory network of Lactobacillus plantarum WCFS1 on basis of correlated gene expression and conserved regulatory motifs. Microbial Biotechnology, 4, 333–344.

    Article  CAS  Google Scholar 

  10. Zhou, M., Theunissen, D., Wels, M., & Siezen, R. J. (2010). LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics, 11, 651.

    Article  Google Scholar 

  11. Jeong, K. J., Jang, S. H., & Velmurugan, N. (2011). Recombinant antibodies: Engineering and production in yeast and bacterial hosts. Biotechnology Journal, 6, 16–27.

    Article  CAS  Google Scholar 

  12. Bird, P. I., Pak, S. C., Worrall, D., & Bottomley, S. (2003). Production of recombinant serpins in Escherichia coli. Methods, 32, 169–176.

    Article  Google Scholar 

  13. Shareck, J., Choi, Y., Lee, B., & Miguez, C. B. (2004). Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Critical Reviews in Biotechnology, 24, 155–208.

    Article  CAS  Google Scholar 

  14. Posno, M., Leer, R. J., van Luijk, N., van Giezen, M. J., Heuvelmans, P. T., Lokman, B. C., et al. (1991). Incompatibility of lactobacillus vectors with replicons derived from small cryptic lactobacillus plasmids and segregational instability of the introduced vectors. Applied and Environmental Microbiology, 57, 1822–1828.

    CAS  Google Scholar 

  15. Khan, S. A. (1997). Rolling-circle replication of bacterial plasmids. Microbiology and Molecular Biology Reviews, 61, 442–455.

    CAS  Google Scholar 

  16. Kiewiet, R., Kok, J., Seegers, J., Venema, G., & Bron, S. (1993). The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Applied and Environmental Microbiology, 59, 358–364.

    CAS  Google Scholar 

  17. van Kranenburg, R., Kleerebezem, M., & de Vos, W. M. (2000). Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000. Plasmid, 43, 130–136.

    Article  Google Scholar 

  18. Yin, S., Hao, Y., Zhai, Z., Li, R., Huang, Y., Tian, H., et al. (2008). Characterization of a cryptic plasmid pM4 from Lactobacillus plantarum M4. FEMS Microbiology Letters, 285, 183–187.

    Article  CAS  Google Scholar 

  19. Asteri, I. A., Papadimitriou, K., Boutou, E., Anastasiou, R., Pot, B., Vorgias, C. E., et al. (2010). Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids. International Journal of Food Microbiology, 141, 222–228.

    Article  CAS  Google Scholar 

  20. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology, 23, 130–135.

    Article  Google Scholar 

  21. Horinouchi, S., & Weisblum, B. (1982). Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology, 150, 815–825.

    CAS  Google Scholar 

  22. Leenhouts, K., Tolner, B., Bron, S., Kok, J., Venema, G., & Seegers, J. (1991). Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWVO1. Plasmid, 26, 55–66.

    Article  CAS  Google Scholar 

  23. Kiewiet, R., Bron, S., de Jonge, K., Venema, G., & Seegers, J. (1993). Theta replication of the lactococcal plasmid pWVO2. Molecular Microbiology, 10, 319–327.

    Article  CAS  Google Scholar 

  24. Sørvig, E., Skaugen, M., Naterstad, K., Eijsink, V., & Axelsson, L. (2005). Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin-antitoxin-like plasmid maintenance system. Microbiology, 151, 421–431.

    Article  Google Scholar 

  25. Iordănescu, S. (1976). Three distinct plasmids originating in the same Staphylococcus aureus strain. Archives Roumaines de Pathologie Experimentale et de Microbiologie, 35, 111–118.

    Google Scholar 

  26. Heinl, S., Spath, K., Egger, E., & Grabherr, R. (2011). Sequence analysis and characterization of two cryptic plasmids derived from Lactobacillus buchneri CD034. Plasmid. doi:10.1016/j.plasmid.2011.08.002

  27. Sambrook, J., & Russell, D. W. (2001). Molecular cloning (3rd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  28. Papagianni, M., Avramidis, N., & Filioussis, G. (2007). High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol. BMC Biotechnol, 7, 15.

    Article  Google Scholar 

  29. Aukrust, T., & Blom, H. (1992). Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Research International, 25, 253–261.

    Article  CAS  Google Scholar 

  30. Skulj, M., Okrslar, V., Jalen, S., Jevsevar, S., Slanc, P., Strukelj, B., et al. (2008). Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microbial Cell Factories, 7, 6.

    Article  Google Scholar 

  31. Fitzsimons, A., Hols, P., Jore, J., Leer, R. J., O’Connell, M., & Delcour, J. (1994). Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus alpha-amylase gene. Applied and Environmental Microbiology, 60, 3529–3535.

    CAS  Google Scholar 

  32. Novick, R. P. (1987). Plasmid incompatibility. Microbiological Reviews, 51, 381–395.

    CAS  Google Scholar 

  33. Sixou, S., Eynard, N., Escoubas, J., Werner, E., & Teissié, J. (1991). Optimized conditions for electrotransformation of bacteria are related to the extent of electropermeabilization. Biochimica et Biophysica Acta, 1088, 135–138.

    Article  CAS  Google Scholar 

  34. Wei, M.-Q., & Rush, C. M. (1995). An improved method for the transformation of Lactobacillus strains using electroporation. Journal of Microbiol Methods, 21, 97–109.

    Article  Google Scholar 

  35. Gietz, D., St Jean, A., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20, 1425.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Christian Doppler Research Association, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heinl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spath, K., Heinl, S., Egger, E. et al. Lactobacillus plantarum and Lactobacillus buchneri as Expression Systems: Evaluation of Different Origins of Replication for the Design of Suitable Shuttle Vectors. Mol Biotechnol 52, 40–48 (2012). https://doi.org/10.1007/s12033-011-9471-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9471-x

Keywords

Navigation