Skip to main content

Advertisement

Log in

Efficient Production and Characterization of Recombinant Human NELL1 Protein in Human Embryonic Kidney 293-F Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

NELL1 is a secretory protein that induces osteogenic differentiation and bone formation by osteoblastic cells. Because of its potent osteoinductive activity, NELL1 may be useful for bone regeneration therapy. However, at present, we have little knowledge regarding NELL1 receptors and NELL1-mediated signaling pathways. We have previously produced NELL1 using an insect’s cell expression system; however, the protein was relatively unstable and was degraded by proteases released from dead cells. In the present study, NELL1 protein was expressed in human embryonic kidney 293-F cells. Stable cell lines expressing NELL1 fused to a C-terminal hexahistidine-tag were obtained by G418 selection of transfected cells. Cells grown in serum-free medium showed high levels of NELL1 protein production (approximately 4 mg/l cell culture) for up to 6 months. NELL1 protein was purified from culture medium using a one-step nickel-chelate affinity chromatography protocol. Purified NELL1 protein immobilized onto culture dishes induced the expression of both early and late osteogenic markers on mouse mesenchymal C3H10T1/2 cells. When NELL1-expressing 293-F cells were grown on gelatin-coated glass cover slips, recombinant NELL1 was deposited in the extracellular matrix after detachment of cells. These results suggest that NELL1 acts as an extracellular matrix component. Recombinant NELL1 formed multimers and was glycosylated. An abundant source of functionally active NELL1 protein will be useful for more advanced studies, such as the development of novel techniques for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, X., Zara, J., Siu, R. K., Ting, K., & Soo, C. (2010). The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. Journal of Dental Research, 89, 865–878.

    Article  CAS  Google Scholar 

  2. Ting, K., Vastardis, H., Mulliken, J. B., Soo, C., Tieu, A., Do, H., et al. (1999). Human NELL-1 expressed in unilateral coronal synostosis. Journal of Bone and Mineral Research, 14, 80–89.

    Article  CAS  Google Scholar 

  3. Zhang, X., Kuroda, S., Carpenter, D., Nishimura, I., Soo, C., Moats, R., et al. (2002). Craniosynostosis in transgenic mice overexpressing Nell-1. Journal of Clinical Investigation, 110, 861–870.

    CAS  Google Scholar 

  4. Desai, J., Shannon, M. E., Johnson, M. D., Ruff, D. W., Hughes, L. A., Kerley, M. K., et al. (2006). Nell1-deficient mice have reduced expression of extracellular matrix proteins causing cranial and vertebral defects. Human Molecular Genetics, 15, 1329–1341.

    Article  CAS  Google Scholar 

  5. Aghaloo, T., Cowan, C. M., Chou, Y. F., Zhang, X., Lee, H., Miao, S., et al. (2006). Nell-1-induced bone regeneration in calvarial defects. American Journal of Pathology, 169, 903–915.

    Article  CAS  Google Scholar 

  6. Bokui, N., Otani, T., Igarashi, K., Kaku, J., Oda, M., Nagaoka, T., et al. (2008). Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Letters, 582, 365–371.

    Article  CAS  Google Scholar 

  7. Kuroda, S., Oyasu, M., Kawakami, M., Kanayama, N., Tanizawa, K., Saito, N., et al. (1999). Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochemical and Biophysical Research Communications, 265, 79–86.

    Article  CAS  Google Scholar 

  8. Cowan, C. M., Cheng, S., Ting, K., Soo, C., Walder, B., Wu, B., et al. (2006). Nell-1 induced bone formation within the distracted intermaxillary suture. Bone, 38, 48–58.

    Article  CAS  Google Scholar 

  9. Zhang, X., Cowan, C. M., Jiang, X., Soo, C., Miao, S., Carpenter, D., et al. (2006). Nell-1 induces acrania-like cranioskeletal deformities during mouse embryonic development. Laboratory Investigation, 86, 633–644.

    Article  CAS  Google Scholar 

  10. Aghaloo, T., Jiang, X., Soo, C., Zhang, Z., Zhang, X., Hu, J., et al. (2007). A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Molecular Therapy, 15, 1872–1880.

    Article  CAS  Google Scholar 

  11. Lu, S. S., Zhang, X., Soo, C., Hsu, T., Napoli, A., Aghaloo, T., et al. (2007). The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine Journal, 7, 50–60.

    Article  Google Scholar 

  12. Aghaloo, T., Cowan, C. M., Zhang, X., Freymiller, E., Soo, C., Wu, B., et al. (2010). The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. Journal of Oral and Maxillofacial Surgery, 68, 300–308.

    Article  Google Scholar 

  13. Li, W., Lee, M., Whang, J., Siu, R. K., Zhang, X., Liu, C., et al. (2010). Delivery of lyophilized Nell-1 in a rat spinal fusion model. Tissue Engineering Part A, 16, 2861–2870.

    Article  CAS  Google Scholar 

  14. Siu, R. K., Lu, S. S., Li, W., Whang, J., McNeill, G. R., Zhang, X., et al. (2011). Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Engineering Part A, 17, 1123–1135.

    Article  CAS  Google Scholar 

  15. Xue, J., Peng, J., Yuan, M., Wang, A., Zhang, L., Liu, S., et al. (2011). NELL1 promotes high-quality bone regeneration in rat femoral distraction osteogenesis model. Bone, 48, 485–495.

    Article  CAS  Google Scholar 

  16. Zhang, X., Ting, K., Bessette, C. M., Culiat, C. T., Sung, S. J., Lee, H., et al. (2011). Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(±) mice. Journal of Bone and Mineral Research, 26, 777–791.

    Article  CAS  Google Scholar 

  17. Cowan, C. M., Jiang, X., Hsu, T., Soo, C., Zhang, B., Wang, J. Z., et al. (2007). Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. Journal of Bone and Mineral Research, 22, 918–930.

    Article  CAS  Google Scholar 

  18. Altmann, F., Staudacher, E., Wilson, I. B., & Marz, L. (1999). Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 16, 109–123.

    Article  CAS  Google Scholar 

  19. Julenius, K., Molgaard, A., Gupta, R., & Brunak, S. (2005). Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology, 15, 153–164.

    Article  CAS  Google Scholar 

  20. Elbein, A. D. (1987). Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annual Review of Biochemistry, 56, 497–534.

    Article  CAS  Google Scholar 

  21. Kuan, S. F., Byrd, J. C., Basbaum, C., & Kim, Y. S. (1989). Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells. Journal of Biological Chemistry, 264, 19271–19277.

    CAS  Google Scholar 

  22. Fleury, D., Gillard, C., Lebhar, H., Vayssiere, B., Touitou, R., Rawadi, G., et al. (2008). Expression, purification and characterization of murine Dkk1 protein. Protein Expression and Purification, 60, 74–81.

    Article  CAS  Google Scholar 

  23. Zhang, X., Carpenter, D., Bokui, N., Soo, C., Miao, S., Truong, T., et al. (2003). Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. Journal of Bone and Mineral Research, 18, 2126–2134.

    Article  CAS  Google Scholar 

  24. Timpl, R., Tisi, D., Talts, J. F., Andac, Z., Sasaki, T., & Hohenester, E. (2000). Structure and function of laminin LG modules. Matrix Biology, 19, 309–317.

    Article  CAS  Google Scholar 

  25. Salasznyk, R. M., Williams, W. A., Boskey, A., Batorsky, A., & Plopper, G. E. (2004). Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2004, 24–34.

    Article  Google Scholar 

  26. Klees, R. F., Salasznyk, R. M., Kingsley, K., Williams, W. A., Boskey, A., & Plopper, G. E. (2005). Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Molecular Biology of the Cell, 16, 881–890.

    Article  CAS  Google Scholar 

  27. Kundu, A. K., & Putnam, A. J. (2006). Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochemical and Biophysical Research Communications, 347, 347–357.

    Article  CAS  Google Scholar 

  28. Klees, R. F., Salasznyk, R. M., Ward, D. F., Crone, D. E., Williams, W. A., Harris, M. P., et al. (2008). Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Experimental Cell Research, 314, 763–773.

    Article  CAS  Google Scholar 

  29. Tsai, K. S., Kao, S. Y., Wang, C. Y., Wang, Y. J., Wang, J. P., & Hung, S. C. (2010). Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. Journal of Biomedical Materials Research Part A, 94, 673–682.

    Google Scholar 

  30. Sottile, J., Selegue, J., & Mosher, D. F. (1991). Synthesis of truncated amino-terminal trimers of thrombospondin. Biochemistry, 30, 6556–6562.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-aid (nos. 18108003, 23510255) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shun’ichi Kuroda or Tomoaki Niimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasebe, A., Tashima, H., Ide, T. et al. Efficient Production and Characterization of Recombinant Human NELL1 Protein in Human Embryonic Kidney 293-F Cells. Mol Biotechnol 51, 58–66 (2012). https://doi.org/10.1007/s12033-011-9440-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9440-4

Keywords

Navigation