Skip to main content
Log in

Identification of miRNAs and Their Target Genes Using Deep Sequencing and Degradome Analysis in Trifoliate Orange [Poncirus trifoliate (L.) Raf]

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 24 September 2011

Abstract

To identify novel as well as conserved miRNAs in citrus, deep sequencing of small RNA library combined with microarray was performed in precocious trifoliate orange (an early flowering mutant of trifoliate orange, Poncirus trifoliata L. Raf.), resulting in the obtainment of a total of 114 conserved miRNAs belonging to 38 families and 155 novel miRNAs. The miRNA star sequences of 39 conserved miRNAs and 27 novel miRNAs were also discovered among newly identified miRNAs, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 172 and 149 genes were identified as targets of conserved miRNAs and novel miRNAs, respectively. GO and KEGG annotation revealed that high ranked miRNA-target genes were those implicated in biological and metabolic processes. To characterize those miRNAs expressed at the juvenile and adult development stages of citrus, further analysis on the expression profiles of these miRNAs through hybridizing the commercial microarray and real-time PCR was performed. The results revealed that some miRNAs were down-regulated at adult stage compared with juvenile stage. Detailed comparison of the expression patterns of some miRNAs and corresponding target genes revealed the negative correlation between them, while few of them are positively correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  Google Scholar 

  2. Bartel, D. P., & Chen, C. Z. (2004). Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet, 5, 396–400.

    Article  CAS  Google Scholar 

  3. Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., et al. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 126, 1203–1217.

    Article  CAS  Google Scholar 

  4. Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., et al. (2009). Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell, 21, 1762.

    Article  CAS  Google Scholar 

  5. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., et al. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320, 1185.

    Article  CAS  Google Scholar 

  6. Baker, C. C., Sieber, P., Wellmer, F., & Meyerowitz, E. M. (2005). The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Current Biology, 15, 303–315.

    Article  CAS  Google Scholar 

  7. Guo, H. S., Xie, Q., Fei, J. F., & Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17, 1376–1386.

    Article  CAS  Google Scholar 

  8. Floyd, S. K., & Bowman, J. L. (2004). Gene regulation: Ancient microRNA target sequences in plants. Nature, 428, 485–486.

    Article  CAS  Google Scholar 

  9. Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.

    Article  CAS  Google Scholar 

  10. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  CAS  Google Scholar 

  11. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.

    Article  CAS  Google Scholar 

  12. Wu, G., & Poethig, R. S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 133, 3539.

    Article  CAS  Google Scholar 

  13. Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D., et al. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138, 750–759.

    Article  CAS  Google Scholar 

  14. Wang, J. W., Schwab, R., Czech, B., Mica, E., & Weigel, D. (2008). Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 20, 1231–1243.

    Article  CAS  Google Scholar 

  15. Wang, J. W., Czech, B., & Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138, 738–749.

    Article  CAS  Google Scholar 

  16. Chuck, G., Meeley, R., Irish, E., Sakai, H., & Hake, S. (2007). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 39, 1517–1521.

    Article  CAS  Google Scholar 

  17. Lauter, N., Kampani, A., Carlson, S., Goebel, M., & Moose, S. P. (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 102, 9412–9417.

    Article  CAS  Google Scholar 

  18. Zhang, J. Z., Li, Z. M., Yao, J. L., & Hu, C. G. (2009). Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene., 430, 95–104.

    Article  CAS  Google Scholar 

  19. Liang, S., Wang, X., & Wan, T. (1999). Precocious trifoliate orange (Poncirus trifoliata L. Raf.) biology characteristic and its stock experiment. ZheJiang Citrus, 19, 2–4. in Chinese.

    Google Scholar 

  20. Zhang, J. Z., Ai, X. Y., Sun, L. M., Zhang, D. L., Guo, W. W., et al. (2011). Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. Plant Molecular Biology, 76(1–2), 187–204.

    Article  CAS  Google Scholar 

  21. Kwak, P. B., Wang, Q. Q., Chen, X. S., Qiu, C. X., & Yang, Z. M. (2009). Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics, 10, 457.

    Article  Google Scholar 

  22. Zhang, J., Xu, Y., Huan, Q., & Chong, K. (2009). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 10, 449.

    Article  Google Scholar 

  23. Rajagopalan, R., Vaucheret, H., Trejo, J., & Bartel, D. P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development, 20, 3407–3425.

    Article  CAS  Google Scholar 

  24. Lu, C., Tej, S. S., Luo, S., Haudenschild, C. D., Meyers, B. C., et al. (2005). Elucidation of the small RNA component of the transcriptome. Science, 309, 1567–1569.

    Article  CAS  Google Scholar 

  25. Glazov, E. A., Cottee, P. A., Barris, W. C., Moore, R. J., Dalrymple, B. P., et al. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Research, 18, 957.

    Article  CAS  Google Scholar 

  26. Xu, Q., Liu, Y., Zhu, A., Wu, X., Ye, J., et al. (2010). Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics, 11, 246.

    Article  Google Scholar 

  27. Song, C., Fang, J., Li, X., Liu, H., & Thomas Chao, C. (2009). Identification and characterization of 27 conserved microRNAs in citrus. Planta, 230, 671–685.

    Article  CAS  Google Scholar 

  28. Zhang, J., Ai, X. Y., Sun, L. M., Zhang, D., Guo, W. W., et al. (2011). Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing. BMC Genomics, 12, 63.

    Article  CAS  Google Scholar 

  29. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.

    Article  CAS  Google Scholar 

  30. Huang, J., Hao, P., Chen, H., Hu, W., Yan, Q., et al. (2009). Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One, 4, e8206.

    Article  Google Scholar 

  31. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406.

    Article  CAS  Google Scholar 

  32. Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., et al. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly, 125, 167–188.

    Article  CAS  Google Scholar 

  33. Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., et al. (2008). Criteria for annotation of plant microRNAs. Plant Cell, 20, 3186–3190.

    Article  CAS  Google Scholar 

  34. Thomson, J. M., Parker, J., Perou, C. M., & Hammond, S. M. (2004). A custom microarray platform for analysis of microRNA gene expression. Nature Methods, 1, 47–53.

    Article  CAS  Google Scholar 

  35. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., et al. (2002). Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.

    Article  Google Scholar 

  36. Gautier, L., Cope, L., Bolstad, B. M., & Irizarry, R. A. (2004). affy—Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20, 307.

    Article  CAS  Google Scholar 

  37. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.

    Article  Google Scholar 

  38. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., & Axtell, M. J. (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Current Biology, 18, 758–762.

    Article  CAS  Google Scholar 

  39. Addo-Quaye, C., Miller, W., & Axtell, M. J. (2009). CleaveLand: A pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 25, 130.

    Article  CAS  Google Scholar 

  40. Schmid, R., & Blaxter, M. L. (2008). annot 8 r: GO, EC and KEGG annotation of EST datasets. BMC Bioinformatics, 9, 180.

    Article  Google Scholar 

  41. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 25–29.

    Article  CAS  Google Scholar 

  42. Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., et al. (2009). SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966.

    Article  CAS  Google Scholar 

  43. Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annual Review of Plant Physiology, 57, 19–53.

    Article  CAS  Google Scholar 

  44. Song, C., Jia, Q., Fang, J., Li, F., Wang, C., et al. (2010). Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biology, 12, 927–934.

    Article  CAS  Google Scholar 

  45. Wu, X. M., Liu, M. Y., Xu, Q., & Guo, W. W. (2010). Identification and characterization of microRNAs from citrus expressed sequence tags. Tree Genetics & Genomes, 1–17.

  46. Song, C., Wang, C., Zhang, C., Korir, N. K., Yu, H., et al. (2010). Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics, 11, 431.

    Article  Google Scholar 

  47. Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S. J., et al. (2003). The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development, 17, 256–268.

    Article  CAS  Google Scholar 

  48. Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., et al. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 8, R96.

    Article  Google Scholar 

  49. Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., et al. (2007). High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS One, 2, e219.

    Article  Google Scholar 

  50. Aukerman, M. J., & Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 15, 2730–2741.

    Article  CAS  Google Scholar 

  51. Moose, S. P., & Sisco, P. H. (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes & Development, 10, 3018–3027.

    Article  CAS  Google Scholar 

  52. Stone, J. M., Liang, X., Nekl, E. R., & Stiers, J. J. (2005). Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant Journal, 41, 744–754.

    Article  CAS  Google Scholar 

  53. Cardon, G. H., H hmann, S., Nettesheim, K., Saedler, H., & Huijser, P. (2002). Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: A novel gene involved in the floral transition. Plant Journal, 12, 367–377.

    Article  Google Scholar 

  54. Jung, J. H., Seo, Y. H., Seo, P. J., Reyes, J. L., Yun, J., et al. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 19, 2736.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Han-Hui Kuang for his helpful discussion and help in revising this manuscript. This research was supported financially by the National Natural Science Foundation of China (grant nos. 30971973, 31071777, 30921002). The Science Foundation of the Doctoral Subject Point of the Chinese Ministry of Education (grant no. 20090146110009), the Fundamental Research Funds for the Central Universities (2011QC037, 2010BQ044), and the 863 Project of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Gen Hu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12033-011-9455-x.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JZ., Ai, XY., Guo, WW. et al. Identification of miRNAs and Their Target Genes Using Deep Sequencing and Degradome Analysis in Trifoliate Orange [Poncirus trifoliate (L.) Raf]. Mol Biotechnol 51, 44–57 (2012). https://doi.org/10.1007/s12033-011-9439-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9439-x

Keywords

Navigation