Skip to main content

Advertisement

Log in

Deciphering Enzyme Function Using Peptide Arrays

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4Pip:

Piperidine-4-carboxylic acid

Aa:

Amino acid

Ab:

Antibody

Abl:

Abelson protein-tyrosine kinase

Abz:

2-Aminobenzoic acid

Acc:

4-Aminomethylcyclohexanecarboxylic acid

ACC:

7-Amino-4-carbamoylmethyl coumarin

ACEi:

Angiotensin converting enzyme inhibitor

Akt1:

Protein kinase B isoform 1

Amb:

4-Aminomethylbenzoic acid

ANPK:

Androgen receptor interacting nuclear protein kinase

AP:

Alkaline phosphatase

APC:

Activated protein C

Aurora A:

Breast tumour-amplified serine/threonine kinase

Aurora B:

Aurora- and IPL1-like midbody-associated protein 1, protein serine/threonine kinase

Bcl2:

Apoptosis regulator B-cell lymphoma 2

Bip:

ß-(4-Biphenyl)alanine

BMK1:

Big mitogen-activated protein kinase 1

Boc:

tert. Butyl-oxy-carbonyl

BODIPY:

(4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore

B-Raf:

Tyrosine kinase-like kinase of the Raf family

Bth:

ß-(3-Benzothienyl)alanine

Bz:

Benzyl

CaMK2:

Calmodulin dependent kinase 2

Cbz:

Benzyl-oxy-carbonyl protecting group

C-CAM-L:

Large isoform of cell–cell adhesion molecule

Cdc15:

Cell devision control protein 15, yeast protein kinase

Cdk2, 5:

Cyclin dependent kinase 2, 5

CDPK-1:

Calcium dependent protein kinase

cGPKIa:

cGMP dependent protein kinase Ia

Cha:

3-Cyclohexyl-alanine

Chk1, 2:

DNA damage checkpoint kinases 1 and 2

CK1, CK2:

Casein kinase 1, 2

CMV:

Cytomegalovirus

c-Raf:

Tyrosine kinase-like kinase of the Raf family

c-Src:

Sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue protein tyrosin kinase

Cy3:

3H-indolium, 2-[3-[1-[6-[(2,5-dioxo-1-pyrrolidinyl)oxy]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1-propen-1-yl]-1-ethyl-3,3-dimethyl-5-sulfo-, inner salt

Cy5:

3H-indolium, 2-[5-[1-[6-[(2,5-dioxo-1-pyrrolidinyl)oxy]-6-oxohexyl]-1,3-dihydro-3,3-dimethyl-5-sulfo-2H-indol-2-ylidene]-1,3-pentadien-1-yl]-1-ethyl-3,3-dimethyl-5-sulfo-, inner salt

DABCYL:

4-(Dimethylaminoazo)benzene-4-carboxylic acid

DANSyl:

Dimethylamino-naphthalen-sulphonic acid

Dap(Dnp):

2-Amino,3-(2′,4′-Dinitrophenylamino)-propionic acid

DAPK:

Death-associated protein kinase

Dbf1-Mob1:

Budding yeast protein kinase Dbf1 in complex with activator (Mps one binder 1)

Dbg:

α,α-Dibutyl glycine

DegP:

Degradation protein, serine protease HtrA

DEX:

Dexamethasone

Dok6:

Docking protein 6

DYRK1A, 2, 4:

Dual-specificity tyrosine phosphorylation-regulated kinase isoform 1A, 2 and 4

EGFR:

Epidermal growth factor receptor kinase

Elk1:

Ets like gene 1

EphA4:

Ephrin receptor tyrosine kinase isoform 4a

EphB2:

Ephrin receptor tyrosine kinase isoform B2

Erk1, Erk2:

Extracellular signal regulated kinases isoforms 1 and 2

Fes:

Feline sarcoma (Snyder-Theilen) oncogene, protein-tyrosine kinase

FGFR-1:

Fibroblast growth factor receptor 1

FITC:

Fluorescein-thiocarbamoyl

Flt3:

Fms-related tyrosine kinase 3

FRET:

Forster resonance energy transfer

Fyn:

Protein-tyrosine kinase of the Src family

GluR1:

AMPAR glutamate receptor 1

Gsk3ß:

Glycogen synthase kinase 3ß

H3, 4:

Histone 3 and 4

HD1, 2:

Histone deacetylase complexes 1 and 2 from P. sativum

Her2:

Herstatin isoform 2

proto:

Oncogenic receptor tyrosine kinase of the EGFR family

hK2:

Glandular kallikrein 2

HRP:

Horseradish peroxidase

InsR:

Insulin receptor kinase

IR:

Insulin receptor tyrosine kinase

Jak1 and 2:

Janus protein-tyrosine kinases 1 and 2

JNK1and 3:

c-Jun NH2-terminal kinases 1 and 3

KAc :

Side chain acetylated lysine

KDR:

Kinase insert domain receptor

KDRI:

Kinase insert domain receptor inhibitor

Kit:

Hardy-Zuckerman 4 feline sarcoma viral oncogene homologue, receptor tyrosine kinase

KPI-2:

Kinase/phosphatase/inhibitor 2

Lck:

Lymphocyte cell-specific protein-tyrosine kinase

LMWPTP:

Low molecular weight protein-tyrosine phosphatase

LPS:

Lipopolysaccharid

Lyn:

Protein-tyrosine kinase of the Src family

MAF:

Mouse adult fibroblast

MALDI-TOF/MS:

Matrix-assisted laser desorption ionisation—time of flight/mass spectrometry

MAP3K8:

Mitogen-activated protein kinase 3 K8

MAPKAPK-2:

MAP kinase activated protein kinase-2

MCA:

7-Methoxycoumarin-4-yl)acetyl

MeAla:

N-methyl-alanine

MEK1:

MAP, Erk kinase 1

MELK:

Maternal leucine zipper kinase

MePhe:

N-methyl-phenylalanine

Met:

Hepatocyte growth factor receptor, protein tyrosin kinase

MK2:

Mitogen-activated protein kinase kinase 2

mLCEC:

Mouse lung capillary endothel cells

MPK1, 2, 3, 6:

Mitogen-activated protein kinases, isoforms 1,2,3, and 6

Nal:

Naphthyl-alanine

NEK6:

Never in mitosis gene A related kinase 6

NGF:

Nerve growth factor

Nle:

Norleucine

p70S6:

Ribosomal protein S6 kinase

PABP1:

Poly(A)-binding protein 1

PapA:

Fimbrial major pilin protein A

PBMC:

Peripheral blood mononuclear cell

PDE4B2, C2, A4, D5:

Isoform B2, C2, A4 and D5 of phosphodiesterase 4

PDGFRß:

Platelet-derived growth factor receptor kinase ß

PDGRF I-1:

Platelet-derived growth factor receptor inhibitor 1

PDK1:

3-Phosphoinositide dependent protein kinase 1

Pia:

4-Piperidinylacetic acid

Pim1:

Proviral integration site 1 kinase

Pin1:

Peptidyl-prolyl-cis/trans-isomerase Pin1, protein interacting with NIMA 1

Pip:

l-piperidine-2-carboxylic acid, pipecolic acid

PKA:

Protein kinase A, cAMP-dependent protein kinase

PKCζ, PKCα, PKCδ:

Protein kinase C isoforms

PKG:

Protein kinase G

PKI:

Protein kinase inhibitor

PknB:

Receptor-like protein kinase from Mycobacterium tuberculosis

Plk1, Plk3, Plk4:

Polo like kinase isoforms 1,3 and 4

PNA:

Peptide nucleic acid

POD:

Peroxidase

PP1, PP2, PP3, PP2A, PP2B:

Protein phosphatase class 1,2,3, 2A and 2B

ppGalNACT:

UDP-N-acetyl-ß-d-galactosamin:polypeptide N-acetylgalactosaminyl-transferase family

pSer:

Phospho-serine

pThr:

Phospho-threonine

PTPμ:

Protein-tyrosine phosphatase μ

PTP1B:

Protein-tyrosine phosphatase 1B

pTyr:

Phospho-tyrosine

PVDF:

Poly(vinylidene difluoride)

Pyk2:

Proline-rich tyrosine kinase 2

QSY:

Xanthylium, 9-[2-[[4-[carboxyl]-1-piperidinyl]sulfonyl]phenyl]-3,6-bis(methylphenylamino)-, chloride

Rock2:

Rho-associated kinase isoform 2

Rsk2:

Ribosomal S6 kinase isoform 2

SAMDI:

Self-assembled monolayers for matrix assisted laser desorption ionisation mass spectrometry

sec. ab:

Secondary antibody

SGK1:

Serum/glucocorticoid regulated kinase isoform 2

SHP1 and SHP2:

SH2 domain containing phosphatase 1 and 2

SIR2:

Silent information regulator 2

SMRT:

Silencing mediator of retinoic acid and thyroid hormone receptor

SNAP25:

Synaptosomal-associated protein 25

SPR:

Surface plasmon resonance

SRPK4:

SR protein kinase isoform 4

ß-Ala:

3-Aminopropionic acid

ß-Gal:

ß-Galactosidase

SSRP1:

Structure-specific recognition protein 1

STAT5:

Signal transducer and activator of transcription 5

Suc:

Succinyl

TBB:

4,5,6,7-Tetrabromobenzotriazole

TBK1:

TANK-binding kinase isoform 1

tBuGly:

α-tert. Butyl-glycine

tBuPhe:

4-tert. Butyl-phenylalanine

TCPTP:

T-cell protein-tyrosine phosphatase

Thi:

ß-(2-Thienyl)-alanine

Thz:

R-4-thiazolidine-carboxylic acid

Tic:

1,2,3,4-Tetrahydro-isochinoline-3-carboxylic acid

Tie2:

Tunica interna endothelial cell kinase 2

Tpk1:

Tyrosine protein kinase 1

TrβI and TRβII:

Transforming growth factor β receptor tyrosine kinases I and II

TSSK3:

Testis specific serine/threonine kinase 3

uPA:

Urinary plasminogen activator

VEGFR2:

Vascular endothelial growth factor receptor kinase 2

Wt:

Wildtype

Yes:

Yamaguchi sarcoma viral oncoge, protein-tyrosine kinase

Z:

Benzyl-oxy-carbonyl

References

  1. Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., & Solas, D. (1991). Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773.

    Article  CAS  Google Scholar 

  2. Pellois, J. P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E., & Gao, X. (2002). Individually addressable parallel peptide synthesis on microchips. Nature Biotechnology, 20, 922–926.

    Article  CAS  Google Scholar 

  3. LeProust, E., Pellois, J. P., Yu, P., Zhang, H., Gao, X., Srivannavit, O., et al. (2000). Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis. Journal of Combinatorial Chemistry, 2, 349–354.

    Article  CAS  Google Scholar 

  4. Komolpis, K., Srivannavit, O., & Gulari, E. (2002). Light-directed simultaneous synthesis of oligopeptides on microarray substrate using a photogenerated acid. Biotechnology Progress, 18, 641–646.

    Article  CAS  Google Scholar 

  5. Frank, R., Güler, S., Krause, S., & Lindenmaier, W. (1991). Peptides 1990. In E. Giralt & D. Andreu (Eds.), Proceedings of the 21st European peptide symposium, pp 151–52.

  6. Frank, R. (1992). Spot-synthesis: an easy technique for the positionally adressable, parallel chemical synthesis on a membrane support. Tetrahedron, 48, 9217–9232.

    Article  CAS  Google Scholar 

  7. Frank, R. (1995). Simultaneous and combinatorial chemical synthesis techniques for the generation and screening of molecular diversity. Journal of Biotechnology, 41, 259–272.

    Article  CAS  Google Scholar 

  8. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., & Reineke, U. (2000). Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers, 55, 188–206.

    Article  CAS  Google Scholar 

  9. Kim, D. H., Shin, D. S., & Lee, Y. S. (2007). Spot arrays on modified glass surfaces for efficient SPOT synthesis and on-chip bioassay of peptides. Journal of Peptide Science, 13, 625–633.

    Article  CAS  Google Scholar 

  10. Frank, R., & Overwin, H. (1996). SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods in Molecular Biology, 66, 149–169.

    CAS  Google Scholar 

  11. Kramer, A., & Schneider-Mergener, J. (1998). Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods in Molecular Biology, 87, 25–39.

    CAS  Google Scholar 

  12. Kramer, A., Reineke, U., Dong, L., Hoffmann, B., Hoffmuller, U., Winkler, D., et al. (1999). Spot synthesis: observations and optimizations. Journal of Peptide Research, 54, 319–327.

    Article  CAS  Google Scholar 

  13. Reineke, U., Kramer, A., & Schneider-Mergener, J. (2001). Epitope mapping with synthetic peptides prepared by SPOT synthesis. In R. Konterman & S. Dübel (Eds.), Antibody engineering (Springer lab manual) (pp 443–459). Berlin: Springer Verlag.

  14. Reineke, U., Volkmer-Engert, R., & Schneider-Mergener, J. (2001). Applications of peptide arrays prepared by the SPOT-technology. Current Opinion in Biotechnology, 12, 59–64.

    Article  CAS  Google Scholar 

  15. Reimer, U., Reineke, U., & Schneider-Mergener, J. (2002). Peptide arrays: from macro to micro. Current Opinion in Biotechnology, 13, 315–320.

    Article  CAS  Google Scholar 

  16. Frank, R. (2002). The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. Journal of Immunological Methods, 267, 13–26.

    Article  CAS  Google Scholar 

  17. Frank, R., & Schneider-Mergener, J. (2002). SPOT-Synthesis—scope and applications. In J. Koch & M. Mahler (Eds.), Peptide arrays on membrane supports: Synthesis and application (pp. 1–22). Berlin, Heidelberg: Springer Science.

    Google Scholar 

  18. Frank, R. (2002). High-density synthetic peptide microarrays: emerging tools for functional genomics and proteomics. Combinatorial Chemistry & High Throughput Screening, 5, 429–440.

    CAS  Google Scholar 

  19. Reineke, U., & Schutkowski, M. (2006). Peptide arrays. In M. Ozkan & M. J. Heller (Eds.), Review article in BioMEMS and biomedical nanotechnology, volume II: Micro and nano-technologies for genomics and proteomics (pp. 161–282). New York: Springer Science+Business Media,LLC.

    Google Scholar 

  20. Hilpert, K., Winkler, D. F., & Hancock, R. E. (2007). Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nature Protocols, 2, 1333–1349.

    Article  CAS  Google Scholar 

  21. Beyer, M., Felgenhauer, T., Ralf Bischoff, F., Breitling, F., & Stadler, V. (2006). A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials, 27, 3505–3514.

    Article  CAS  Google Scholar 

  22. Beyer, M., Nesterov, A., Block, I., Konig, K., Felgenhauer, T., Fernandez, S., et al. (2007). Combinatorial synthesis of peptide arrays onto a microchip. Science, 318, 1888.

    Article  CAS  Google Scholar 

  23. Beyer, M., Block, I., Konig, K., Nesterov, A., Fernandez, S., Felgenhauer, T., et al. (2009). A novel combinatorial approach to high-density peptide arrays. Methods in Molecular Biology, 570, 309–316.

    Article  CAS  Google Scholar 

  24. Antohe, B. V., & Cooley, P. W. (2007). In situ synthesis of peptide microarrays using ink-jet microdispensing. Methods in Molecular Biology, 381, 299–312.

    Article  CAS  Google Scholar 

  25. Adler, G., Türk, R., Frank, N., Zander, W., Wu, W., Volkmer-Engert, J., Schneider-Mergener, J., & Gausepohl, H. (1999). In R. Epton (Ed.), Proceedings of the international symposium on innovation and perspectives in solid phase synthesis, pp 221–22.

  26. Falsey, J. R., Renil, M., Park, S., Li, S., & Lam, K. S. (2001). Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjugate Chemistry, 12, 346–353.

    Article  CAS  Google Scholar 

  27. Lizcano, J. M., Deak, M., Morrice, N., Kieloch, A., Hastie, C. J., Dong, L., et al. (2002). Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. Journal of Biological Chemistry, 277, 27839–27849.

    Article  CAS  Google Scholar 

  28. Panse, S., Dong, L., Burian, A., Carus, R., Schutkowski, M., Reimer, U., et al. (2004). Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Molecular Diversity, 8, 291–299.

    Article  CAS  Google Scholar 

  29. Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M., & Reimer, U. (2004). Target specificity analysis of the Abl kinase using peptide microarray data. Journal of Molecular Biology, 336, 307–311.

    Article  CAS  Google Scholar 

  30. Schutkowski, M., Reimer, U., Panse, S., Dong, L., Lizcano, J. M., & Alessi, D. R. (2004). High-content peptide microarrays for deciphering kinase specificity and biology. Angewandte Chemie, 116, 2725–2728.

    Article  Google Scholar 

  31. Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y., & Yao, S. Q. (2002). Developing site-specific immobilization strategies of peptides in a microarray. Bioorganic & Medicinal Chemistry Letters, 12, 2079–2083.

    Article  CAS  Google Scholar 

  32. Inoue, Y., Mori, T., Yamanouchi, G., Han, X., Sonoda, T., Niidome, T., et al. (2008). Surface plasmon resonance imaging measurements of caspase reactions on peptide microarrays. Analytical Biochemistry, 375, 147–149.

    Article  CAS  Google Scholar 

  33. Han, X., & Katayama, Y. (2010). A Peptide microarray for detecting protein kinase activity in cell lysates. Methods in Molecular Biology, 669, 183–194.

    Article  CAS  Google Scholar 

  34. Han, X., Sonoda, T., Mori, T., Yamanouchi, G., Yamaji, T., Shigaki, S., et al. (2010). Protein kinase substrate profiling with a high-density peptide microarray. Combinatorial Chemistry & High Throughput Screening, 13, 777–789.

    Article  CAS  Google Scholar 

  35. Inamori, K., Kyo, M., Matsukawa, K., Inoue, Y., Sonoda, T., Tatematsu, K., et al. (2008). Analytical Chemistry, 80, 643–650.

    Article  CAS  Google Scholar 

  36. Inamori, K., Kyo, M., Nishiya, Y., Inoue, Y., Sonoda, T., Kinoshita, E., et al. (2005). Optimal surface chemistry for peptide immobilization in on-chip phosphorylation analysis. Analytical Chemistry, 77, 3979–3985.

    Article  CAS  Google Scholar 

  37. Shigaki, S., Yamaji, T., Han, X., Yamanouchi, G., Sonoda, T., Okitsu, O., et al. (2007). A peptide microarray for the detection of protein kinase activity in cell lysate. Analytical Sciences, 23, 271–275.

    Article  CAS  Google Scholar 

  38. Lemeer, S., Jopling, C., Naji, F., Ruijtenbeek, R., Slijper, M., Heck, A. J., et al. (2007). Protein-tyrosine kinase activity profiling in knock down zebrafish embryos. PLoS ONE, 2, e581.

    Article  CAS  Google Scholar 

  39. Lemeer, S., Ruijtenbeek, R., Pinkse, M. W., Jopling, C., Heck, A. J., den Hertog, J., et al. (2007). Endogenous phosphotyrosine signaling in zebrafish embryos. Molecular & Cellular Proteomics, 6, 2088–2099.

    Article  CAS  Google Scholar 

  40. Mori, T., Inamori, K., Inoue, Y., Han, X., Yamanouchi, G., Niidome, T., & Katayama, Y. (2008). Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging. Analytical Biochemistry, 375, 223–231.

    Article  CAS  Google Scholar 

  41. Han, A., Sonoda, T., Kang, J. H., Murata, M. T, N. I., & Katayam, Y. (2006). Development of a fluorescence peptide chip for the detection of caspase activity. Combinatorial Chemistry & High Throughput Screening, 9, 21–25.

    Article  CAS  Google Scholar 

  42. Dawson, P. E., Muir, T. W., Clark-Lewis, I., & Kent, S. B. (1994). Synthesis of proteins by native chemical ligation. Science, 266, 776–779.

    Article  CAS  Google Scholar 

  43. Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y., & Yao, S. Q. (2002). Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorganic & Medicinal Chemistry Letters, 12, 2085–2088.

    Article  CAS  Google Scholar 

  44. Uttamchandani, M., Chan, E. W., Chen, G. Y., & Yao, S. Q. (2003). Combinatorial peptide microarrays for the rapid determination of kinase specificity. Bioorganic & Medicinal Chemistry Letters, 13, 2997–3000.

    Article  CAS  Google Scholar 

  45. Uttamchandani, M., Chen, G. Y., Lesaicherre, M. L., & Yao, S. Q. (2004). Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays. Methods in Molecular Biology, 264, 191–204.

    CAS  Google Scholar 

  46. Houseman, B. T., Huh, J. H., Kron, S. J., & Mrksich, M. (2002). Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnology, 20, 270–274.

    Article  CAS  Google Scholar 

  47. Kohn, M., Wacker, R., Peters, C., Schroder, H., Soulere, L., Breinbauer, R., et al. (2003). Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angewandte Chemie (International ed. in English), 42, 5830–5834.

    Article  CAS  Google Scholar 

  48. Govindaraju, T., Jonkheijm, P., Gogolin, L., Schroeder, H., Becker, C. F., Niemeyer, C. M., & Waldmann, H. (2008) Surface immobilization of biomolecules by click sulfonamide reaction. Chemical Communication (Camb), 3723–3725.

  49. Kimura, N., Okegawa, T., Yamazaki, K., & Matsuoka, K. (2007). Site-specific, covalent attachment of poly(dT)-modified peptides to solid surfaces for microarrays. Bioconjugate Chemistry, 18, 1778–1785.

    Article  CAS  Google Scholar 

  50. Parker, L. L., Brueggemeier, S. B., Rhee, W. J., Wu, D., Kent, S. B., Kron, S. J., et al. (2006). Photocleavable peptide hydrogel arrays for MALDI-TOF analysis of kinase activity. Analyst, 131, 1097–1104.

    Article  CAS  Google Scholar 

  51. Lynch, M., Mosher, C., Huff, J., Nettikadan, S., Johnson, J., & Henderson, E. (2004). Functional protein nanoarrays for biomarker profiling. Proteomics, 4, 1695–1702.

    Article  CAS  Google Scholar 

  52. Wiley, J. P., Hughes, K. A., Kaiser, R. J., Kesicki, E. A., Lund, K. P., & Stolowitz, M. L. (2001). Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography. Bioconjugate Chemistry, 12, 240–250.

    Article  CAS  Google Scholar 

  53. Stolowitz, M. L., Ahlem, C., Hughes, K. A., Kaiser, R. J., Kesicki, E. A., Li, G., et al. (2001). Phenylboronic acid-salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjugate Chemistry, 12, 229–239.

    Article  CAS  Google Scholar 

  54. Melnyk, O., Duburcq, X., Olivier, C., Urbes, F., Auriault, C., & Gras-Masse, H. (2002). Peptide arrays for highly sensitive and specific antibody-binding fluorescence assays. Bioconjugate Chemistry, 13, 713–720.

    Article  CAS  Google Scholar 

  55. Olivier, C., Perzyna, A., Coffinier, Y., Grandidier, B., Stievenard, D., Melnyk, O., et al. (2006). Detecting the chemoselective ligation of peptides to silicon with the use of cobalt-carbonyl labels. Langmuir, 22, 7059–7065.

    Article  CAS  Google Scholar 

  56. Carion, O., Souplet, V., Olivier, C., Maillet, C., Medard, N., El-Mahdi, O., et al. (2007). Chemical micropatterning of polycarbonate for site-specific peptide immobilization and biomolecular interactions. ChemBioChem, 8, 315–322.

    Article  CAS  Google Scholar 

  57. Coffinier, Y., Szunerits, S., Jama, C., Desmet, R., Melnyk, O., Marcus, B., et al. (2007). Peptide immobilization on amine-terminated boron-doped diamond surfaces. Langmuir, 23, 4494–4497.

    Article  CAS  Google Scholar 

  58. Coffinier, Y., Olivier, C., Perzyna, A., Grandidier, B., Wallart, X., Durand, J. O., et al. (2005). Semicarbazide-functionalized Si(111) surfaces for the site-specific immobilization of peptides. Langmuir, 21, 1489–1496.

    Article  CAS  Google Scholar 

  59. Souplet, V., Roux, C., & Melnyk, O. (2009). Peptide microarrays on bisphenol A polycarbonate. Methods in Molecular Biology, 570, 287–297.

    Article  CAS  Google Scholar 

  60. Souplet, V., Desmet, R., & Melnyk, O. (2009). In situ ligation between peptides and silica nanoparticles for making peptide microarrays on polycarbonate. Bioconjugate Chemistry, 20, 550–557.

    Article  CAS  Google Scholar 

  61. Gupta, N., Lin, B. F., Campos, L. M., Dimitriou, M. D., Hikita, S. T., Treat, N. D., et al. (2010). A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chemistry, 2, 138–145.

    Article  CAS  Google Scholar 

  62. Kohn, M. (2009). Immobilization strategies for small molecule, peptide and protein microarrays. J Peptide Science, 15, 393–397.

    Article  CAS  Google Scholar 

  63. Weinrich, D., Lin, P. C., Jonkheijm, P., Nguyen, U. T., Schroder, H., Niemeyer, C. M., et al. (2010). Oriented immobilization of farnesylated proteins by the thiol-ene reaction. Angewandte Chemie (International ed. in English), 49, 1252–1257.

    Article  CAS  Google Scholar 

  64. Weinrich, D., Kohn, M., Jonkheijm, P., Westerlind, U., Dehmelt, L., Engelkamp, H., et al. (2010). Preparation of biomolecule microstructures and microarrays by thiol-ene photoimmobilization. ChemBioChem, 11, 235–247.

    Article  CAS  Google Scholar 

  65. Wegner, G. J., Lee, H. J., & Corn, R. M. (2002). Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Analytical Chemistry, 74, 5161–5168.

    Article  CAS  Google Scholar 

  66. Diaz-Mochon, J. J., Bialy, L., & Bradley, M. (2006). Dual colour, microarray-based, analysis of 10,000 protease substrates. Chemical Communication (Camb), 3984–3986.

  67. Pouchain, D., Diaz-Mochon, J. J., Bialy, L., & Bradley, M. (2007). A 10,000 member PNA-encoded peptide library for profiling tyrosine kinases. ACS Chemical Biology, 2, 810–818.

    Article  CAS  Google Scholar 

  68. Luo, K., Zhou, P., & Lodish, H. F. (1995). The specificity of the transforming growth factor beta receptor kinases determined by a spatially addressable peptide library. Proceedings of the National Academy of Sciences of the United States of America, 92, 11761–11765.

    Article  CAS  Google Scholar 

  69. Bohmer, F. D., & Uecker, A. (2009). A substrate peptide for the FLT3 receptor tyrosine kinase. British Journal Haematology, 144, 127–130.

    Article  CAS  Google Scholar 

  70. Olaussen, K. A., Commo, F., Tailler, M., Lacroix, L., Vitale, I., Raza, S. Q., et al. (2009). Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines. Oncogene, 28, 4249–4260.

    Article  CAS  Google Scholar 

  71. MacBeath, G., & Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760–1763.

    CAS  Google Scholar 

  72. Lee, S. J., & Lee, S. Y. (2004). Microarrays of peptides elevated on the protein layer for efficient protein kinase assay. Analytical Biochemistry, 330, 311–316.

    Article  CAS  Google Scholar 

  73. Lee, D. W., Kim, H. J., Choi, C. H., Shin, J. H., & Kim, E. K. (2010). Development of a protein chip to measure PKCbeta activity. Applied Biochemistry and Biotechnology, 163, 803–812.

    Article  CAS  Google Scholar 

  74. Gao, L., Sun, H., & Yao, S. Q. (2010). Activity-based high-throughput determination of PTPs substrate specificity using a phosphopeptide microarray. Biopolymers, 94, 810–819.

    Article  CAS  Google Scholar 

  75. Sun, H., Lu, C. H., Uttamchandani, M., Xia, Y., Liou, Y. C., & Yao, S. Q. (2008). Peptide Microarray for High-Throughput Determination of Phosphatase Specificity and Biology. Angewandte Chemie (International ed. in English), 47, 1698–1702.

    Article  CAS  Google Scholar 

  76. Thiele, A., Zerweck, J., Weiwad, M., Fischer, G., & Schutkowski, M. (2009). High-density peptide microarrays for reliable identification of phosphorylation sites and upstream kinases. In M. Cretich & M. Chiari (Eds.), Peptide microarrays. Methods in molecular biology, (Vol. 570, pp. 203–219). New York: Springer.

  77. Buss, H., Dorrie, A., Schmitz, M. L., Frank, R., Livingstone, M., Resch, K., et al. (2004). Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. Journal of Biological Chemistry, 279, 49571–49574.

    Article  CAS  Google Scholar 

  78. Li, Y., Keller, D. M., Scott, J. D., & Lu, H. (2005). CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity. Journal of Biological Chemistry, 280, 11869–11875.

    Article  CAS  Google Scholar 

  79. Yu, J. C., Chen, J. R., Lin, C. H., Zhang, G., Lam, P. S., Wenger, K. H., et al. (2009). Tensile strain-induced Ets-2 phosphorylation by CaMKII and the homeostasis of cranial sutures. Plastic and Reconstructive Surgery, 123, 83S–93S.

    Article  CAS  Google Scholar 

  80. Wiesner, S., Wybenga-Groot, L. E., Warner, N., Lin, H., Pawson, T., Forman-Kay, J. D., et al. (2006). A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases. EMBO Journal, 25, 4686–4696.

    Article  CAS  Google Scholar 

  81. Thiele, A., Weiwad, M., Zerweck, J., Fischer, G., & Schutkowski, M. (2010). High density peptide microarrays for proteome-wide fingerprinting of kinase activities in cell lysates. Methods in Molecular Biology, 669, 173–181.

    Article  CAS  Google Scholar 

  82. Szallasi, Z., Denning, M. F., Chang, E. Y., Rivera, J., Yuspa, S. H., Lehel, C., et al. (1995). Development of a rapid approach to identification of tyrosine phosphorylation sites: application to PKC delta phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells. Biochemical and Biophysical Research Communications, 214, 888–894.

    Article  CAS  Google Scholar 

  83. Edlund, M., Wikstrom, K., Toomik, R., Ek, P., & Obrink, B. (1998). Characterization of protein kinase C-mediated phosphorylation of the short cytoplasmic domain isoform of C-CAM. FEBS Letters, 425, 166–170.

    Article  CAS  Google Scholar 

  84. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., et al. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31, 365–370.

    Article  CAS  Google Scholar 

  85. Kreegipuu, A., Blom, N., & Brunak, S. (1999). PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Research, 27, 237–239.

    Article  CAS  Google Scholar 

  86. Toomik, R., & Ek, P. (1997). A potent and highly selective peptide substrate for protein kinase C assay. Biochemical Journal, 322(Pt 2), 455–460.

    CAS  Google Scholar 

  87. Stulemeijer, I. J., Stratmann, J. W., & Joosten, M. H. (2007). Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiology, 144, 1481–1494.

    Article  CAS  Google Scholar 

  88. Ritsema, T., Joore, J., van Workum, W., & Pieterse, C. M. (2007). Kinome profiling of Arabidopsis using arrays of kinase consensus substrates. Plant Methods, 3, 3.

    Article  CAS  Google Scholar 

  89. Hayashi, M., Fearns, C., Eliceiri, B., Yang, Y., & Lee, J. D. (2005). Big mitogen-activated protein kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Cancer Research, 65, 7699–7706.

    CAS  Google Scholar 

  90. Mah, A. S., Elia, A. E., Devgan, G., Ptacek, J., Schutkowski, M., Snyder, M., et al. (2005). Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochemistry, 6, 22.

    Article  CAS  Google Scholar 

  91. Diks, S. H., Parikh, K., van der Sijde, M., Joore, J., Ritsema, T., & Peppelenbosch, M. P. (2007). Evidence for a minimal eukaryotic phosphoproteome? PLoS ONE, 2, e777.

    Article  CAS  Google Scholar 

  92. Diks, S. H., Kok, K., O’Toole, T., Hommes, D. W., van Dijken, P., Joore, J., et al. (2004). Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells. Journal of Biological Chemistry, 279, 49206–49213.

    Article  CAS  Google Scholar 

  93. van Baal, J. W., Diks, S. H., Wanders, R. J., Rygiel, A. M., Milano, F., Joore, J., et al. (2006). Comparison of kinome profiles of Barrett’s esophagus with normal squamous esophagus and normal gastric cardia. Cancer Research, 66, 11605–11612.

    Article  CAS  Google Scholar 

  94. Lowenberg, M., Tuynman, J., Scheffer, M., Verhaar, A., Vermeulen, L., van Deventer, S., et al. (2006). Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology, 147, 3555–3562.

    Article  CAS  Google Scholar 

  95. Lowenberg, M., Tuynman, J., Bilderbeek, J., Gaber, T., Buttgereit, F., van Deventer, S., et al. (2005). Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood, 106, 1703–1710.

    Article  CAS  Google Scholar 

  96. Fraser, J. A., Vojtesek, B., & Hupp, T. R. (2010). A novel p53 phosphorylation site within the MDM2 ubiquitination signal: I. Phosphorylation at SER269 in vivo is linked to inactivation of p53 function. Journal of Biological Chemistry, 285, 37762–37772.

    Article  CAS  Google Scholar 

  97. Zerweck, J., Masch, A., & Schutkowski, M. (2008). In U. Reineke & M. Schutkowski (Eds.), Methods in molecular biology, epitope mapping protocols (2nd Ed., Chap 12).

  98. Desmet, R., Diesis, E., Drobecq, H., Rouanet, C., Chemlal, K., Debrie, A. S., et al. (2010). In situ chemical modification of peptide microarrays: Application to the study of the antibody responses to methylated antigens. Methods in Molecular Biology, 669, 135–145.

    Article  CAS  Google Scholar 

  99. Piret, G., Desmet, R., Diesis, E., Drobecq, H., Segers, J., Rouanet, C., et al. (2010). Chips from chips: Application to the study of antibody responses to methylated proteins. Journal of Proteome Research, 9, 6467–6478.

    Article  CAS  Google Scholar 

  100. Piret, G., Drobecq, H., Boukherroub, R., & Melnyk, O. (2010). In situ chemical modification of peptide microarrays: characterization by desorption/ionization on silicon nanowires. Methods in Molecular Biology, 669, 125–133.

    Article  CAS  Google Scholar 

  101. Espanel, X., Walchli, S., Ruckle, T., Harrenga, A., Huguenin-Reggiani, M., & Hooft van Huijsduijnen, R. (2003). Mapping of synergistic components of weakly interacting protein-protein motifs using arrays of paired peptides. Journal of Biological Chemistry, 278, 15162–15167.

    Article  CAS  Google Scholar 

  102. Yu, C., Malesevic, M., Jahreis, G., Schutkowski, M., Fischer, G., & Schiene-Fischer, C. (2005). The architecture of protein-ligand binding sites revealed through template-assisted intramolecular peptide-peptide interactions. Angewandte Chemie (International ed. in English), 44, 1408–1412.

    Article  CAS  Google Scholar 

  103. Malesevic, M., Poehlmann, A., Hernandez Alvarez, B., Diessner, A., Trager, M., Rahfeld, J. U., et al. (2010). The protein-free IANUS peptide array uncovers interaction sites between Escherichia coli Parvulin 10 and alkyl hydroperoxide reductase. Biochemistry, 49, 8626–8635.

    Article  CAS  Google Scholar 

  104. Mukhija, S., Germeroth, L., Schneider-Mergener, J., & Erni, B. (1998). Identification of peptides inhibiting enzyme I of the bacterial phosphotransferase system using combinatorial cellulose-bound peptide libraries. European Journal of Biochemistry, 254, 433–438.

    Article  CAS  Google Scholar 

  105. Dostmann, W. R., Nickl, C., Thiel, S., Tsigelny, I., Frank, R., & Tegge, W. J. (1999). Delineation of selective cyclic GMP-dependent protein kinase Ialpha substrate and inhibitor peptides based on combinatorial peptide libraries on paper. Pharmacology and Therapeutics, 82, 373–387.

    Article  CAS  Google Scholar 

  106. Dostmann, W. R., Tegge, W., Frank, R., Nickl, C. K., Taylor, M. S., & Brayden, J. E. (2002). Exploring the mechanisms of vascular smooth muscle tone with highly specific, membrane-permeable inhibitors of cyclic GMP-dependent protein kinase Ialpha. Pharmacology and Therapeutics, 93, 203–215.

    Article  CAS  Google Scholar 

  107. Rodriguez, M., Li, S. S., Harper, J. W., & Songyang, Z. (2004). An oriented peptide array library (OPAL) strategy to study protein-protein interactions. Journal of Biological Chemistry, 279, 8802–8807.

    Article  CAS  Google Scholar 

  108. Tegge, W., Frank, R., Hofmann, F., & Dostmann, W. R. (1995). Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry, 34, 10569–10577.

    Article  CAS  Google Scholar 

  109. Morales Betanzos, C., Gonzalez-Moa, M. J., Boltz, K. W., Vander Werf, B. D., Johnston, S. A., & Svarovsky, S. A. (2009). Bacterial glycoprofiling by using random sequence peptide microarrays. ChemBioChem, 10, 877–888.

    Article  CAS  Google Scholar 

  110. Halperin, R. F., Stafford, P., & Johnston, S. A. (2010). Exploring antibody recognition of sequence space through random-sequence peptide microarrays. Molecular & Cellular Proteomics, 10, M110 000786.

    Google Scholar 

  111. Fu, J., Cai, K., Johnston, S. A., & Woodbury, N. W. (2010). Exploring peptide space for enzyme modulators. Journal of the American Chemical Society, 132, 6419–6424.

    Article  CAS  Google Scholar 

  112. Dostmann, W. R., Taylor, M. S., Nickl, C. K., Brayden, J. E., Frank, R., & Tegge, W. J. (2000). Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase Ialpha inhibit NO-induced cerebral dilation. Proceedings of the National Academy of Sciences of the United States of America, 97, 14772–14777.

    Article  CAS  Google Scholar 

  113. Himpel, S., Tegge, W., Frank, R., Leder, S., Joost, H. G., & Becker, W. (2000). Specificity determinants of substrate recognition by the protein kinase DYRK1A. Journal of Biological Chemistry, 275, 2431–2438.

    Article  CAS  Google Scholar 

  114. Loog, M., Toomik, R., Sak, K., Muszynska, G., Jarv, J., & Ek, P. (2000). Peptide phosphorylation by calcium-dependent protein kinase from maize seedlings. European Journal of Biochemistry, 267, 337–343.

    Article  CAS  Google Scholar 

  115. Galello, F., Portela, P., Moreno, S., & Rossi, S. (2010). Characterization of substrates that have a differential effect on Saccharomyces cerevisiae protein kinase A holoenzyme activation. Journal of Biological Chemistry, 285, 29770–29779.

    Article  CAS  Google Scholar 

  116. Santamaria, A., Wang, B., Elowe, S., Malik, R., Zhang, F., Bauer, M., et al. (2010). The Plk1-dependent phosphoproteome of the early mitotic spindle. Molecular & Cellular Proteomics, 10, M110 004457.

    Google Scholar 

  117. Rathert, P., Dhayalan, A., Murakami, M., Zhang, X., Tamas, R., Jurkowska, R., et al. (2008). Protein lysine methyltransferase G9a acts on non-histone targets. Nature Chemical Biology, 4, 344–346.

    Article  CAS  Google Scholar 

  118. Rathert, P., Zhang, X., Freund, C., Cheng, X., & Jeltsch, A. (2008). Analysis of the substrate specificity of the dim-5 histone lysine methyltransferase using Peptide arrays. Chemistry & Biology, 15, 5–11.

    Article  CAS  Google Scholar 

  119. Lee, J., & Bedford, M. T. (2002). PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Reports, 3, 268–273.

    Article  CAS  Google Scholar 

  120. Gurard-Levin, Z. A., Kilian, K. A., Kim, J., Bahr, K., & Mrksich, M. (2010). Peptide arrays identify isoform-selective substrates for profiling endogenous lysine deacetylase activity. ACS Chemical Biology, 5, 863–873.

    Article  CAS  Google Scholar 

  121. Gurard-Levin, Z. A., Kim, J., & Mrksich, M. (2009). Combining mass spectrometry and peptide arrays to profile the specificities of histone deacetylases. Chembiochem, 10, 2159–2161.

    Article  CAS  Google Scholar 

  122. Gurard-Levin, Z. A., & Mrksich, M. (2008). The activity of HDAC8 depends on local and distal sequences of its peptide substrates. Biochemistry, 47, 6242–6250.

    Article  CAS  Google Scholar 

  123. Smith, B. C., Settles, B., Hallows, W. C., Craven, M. W., & Denu, J. M. (2010). SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chemical Biology, 6, 146–157

    Article  CAS  Google Scholar 

  124. Lu, P. J., Zhou, X. Z., Shen, M., & Lu, K. P. (1999). Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science, 283, 1325–1328.

    Article  CAS  Google Scholar 

  125. Wildemann, D., Erdmann, F., Alvarez, B. H., Stoller, G., Zhou, X. Z., Fanghanel, J., et al. (2006). Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. Journal of Medicinal Chemistry, 49, 2147–2150.

    Article  CAS  Google Scholar 

  126. Patzelt, H., Rudiger, S., Brehmer, D., Kramer, G., Vorderwulbecke, S., Schaffitzel, E., et al. (2001). Binding specificity of Escherichia coli trigger factor. Proceedings of the National Academy of Sciences of the United States of America, 98, 14244–14249.

    Article  CAS  Google Scholar 

  127. Deuerling, E., Patzelt, H., Vorderwulbecke, S., Rauch, T., Kramer, G., Schaffitzel, E., et al. (2003). Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Molecular Microbiology, 47, 1317–1328.

    Article  CAS  Google Scholar 

  128. Fazio, F., Bryan, M. C., Blixt, O., Paulson, J. C., & Wong, C. H. (2002). Synthesis of sugar arrays in microtiter plate. Journal of the American Chemical Society, 124, 14397–14402.

    Article  CAS  Google Scholar 

  129. Steentoft, C., Schjoldager, K. T., Clo, E., Mandel, U., Levery, S. B., Pedersen, J. W., et al. (2010). Characterization of an immunodominant cancer-specific O-glycopeptide epitope in murine podoplanin (OTS8). Glycoconjugate Journal, 27, 571–582.

    Article  CAS  Google Scholar 

  130. Blixt, O., Clo, E., Nudelman, A. S., Sorensen, K. K., Clausen, T., Wandall, H. H., et al. (2010). A high-throughput O-glycopeptide discovery platform for seromic profiling. Journal of Proteome Research, 9, 5250–5261.

    Article  CAS  Google Scholar 

  131. von Olleschik-Elbheim, L., el Baya, A., & Schmidt, M. A. (1997). Membrane anchored synthetic peptides as a tool for structure-function analysis of pertussis toxin and its target proteins. Advances in Experimental Medicine and Biology, 419, 87–91.

    Article  CAS  Google Scholar 

  132. Fahie, K., Hu, P., Swatkoski, S., Cotter, R. J., Zhang, Y., & Wolberger, C. (2009). Side chain specificity of ADP-ribosylation by a sirtuin. FEBS Journal, 276, 7159–7176.

    Article  CAS  Google Scholar 

  133. Zhu, Q., Uttamchandani, M., Li, D., Lesaicherre, M. L., & Yao, S. Q. (2003). Enzymatic profiling system in a small-molecule microarray. Organic Letters, 5, 1257–1260.

    Article  CAS  Google Scholar 

  134. Zhu, H., & Snyder, M. (2003). Protein chip technology. Current Opinion in Chemical Biology, 7, 55–63.

    Article  CAS  Google Scholar 

  135. Schwamborn, K., Knipscheer, P., van Dijk, E., van Dijk, W. J., Sixma, T. K., Meloen, R. H., et al. (2008). SUMO assay with peptide arrays on solid support: Insights into SUMO target sites. Journal of Biochemistry, 144, 39–49.

    Article  CAS  Google Scholar 

  136. Li, X., Vadrevu, S., Dunlop, A., Day, J., Advant, N., Troeger, J., et al. (2010). Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK. Biochemical Journal, 428, 55–65.

    Article  CAS  Google Scholar 

  137. Li, X., Baillie, G. S., & Houslay, M. D. (2009). Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. Journal of Biological Chemistry, 284, 16170–16182.

    Article  CAS  Google Scholar 

  138. Tegge, W. J., & Frank, R. (1998). Analysis of protein kinase substrate specificity by the use of peptide libraries on cellulose paper (SPOT-method). Methods in Molecular Biology, 87, 99–106.

    CAS  Google Scholar 

  139. Bodem, J., & Bluthner, M. (2002). In J. Koch & M. Mahler (Eds.), Peptide arrays on membrane supports—Synthesis and applications (p. 141). Berlin, Heidelberg: Springer Science.

  140. Collins, M. O., Yu, L., Coba, M. P., Husi, H., Campuzano, I., Blackstock, W. P., et al. (2005). Proteomic analysis of in vivo phosphorylated synaptic proteins. Journal of Biological Chemistry, 280, 5972–5982.

    Article  CAS  Google Scholar 

  141. Papadopoulos, C., Arato, K., Lilienthal, E., Zerweck, J., Schutkowski, M., Chatain, N., et al. (2010). Splice variants of the dual-specificity tyrosine phosphorylation-regulated kinase 4 (DYRK4) differ in their subcellular localization and catalytic activity. Journal of Biological Chemistry, 286, 5494–5505.

    Article  CAS  Google Scholar 

  142. Martin, K., Steinberg, T. H., Cooley, L. A., Gee, K. R., Beechem, J. M., & Patton, W. F. (2003). Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics, 3, 1244–1255.

    Article  CAS  Google Scholar 

  143. Zhu, Q., Hong, A., Sheng, N., Zhang, X., Matejko, A., Jun, K. Y., et al. (2007). microParaflo biochip for nucleic acid and protein analysis. Methods in Molecular Biology, 382, 287–312.

    Article  CAS  Google Scholar 

  144. Rupcich, N., Green, J. R., & Brennan, J. D. (2005). Nanovolume kinase inhibition assay using a sol-gel-derived multicomponent microarray. Analytical Chemistry, 77, 8013–8019.

    Article  CAS  Google Scholar 

  145. Shults, M. D., Kozlov, I. A., Nelson, N., Kermani, B. G., Melnyk, P. C., Shevchenko, V., et al. (2007). A multiplexed protein kinase assay. ChemBioChem, 8, 933–942.

    Article  CAS  Google Scholar 

  146. Akita, S., Umezawa, N., Kato, N., & Higuchi, T. (2008). Array-based fluorescence assay for serine/threonine kinases using specific chemical reaction. Bioorganic & Medicinal Chemistry, 16, 7788–7794.

    Article  CAS  Google Scholar 

  147. Elphick, L. M., Lee, S. E., Gouverneur, V., & Mann, D. J. (2007). Using chemical genetics and ATP analogues to dissect protein kinase function. ACS Chemical Biology, 2, 299–314.

    Article  CAS  Google Scholar 

  148. Allen, J. J., Li, M., Brinkworth, C. S., Paulson, J. L., Wang, D., Hubner, A., et al. (2007). A semisynthetic epitope for kinase substrates. Nature Methods, 4, 511–516.

    Article  CAS  Google Scholar 

  149. Kerman, K., and Kraatz, H. B. (2007). Electrochemical detection of kinase-catalyzed thiophosphorylation using gold nanoparticles. Chem Commun (Camb) , 5019-21.

  150. Song, H., Kerman, K., & Kraatz, H. B. (2008). Electrochemical detection of kinase-catalyzed phosphorylation using ferrocene-conjugated ATP. Chemical Communications (Camb), 502–504.

  151. Sun, L., Liu, D., & Wang, Z. (2007). Microarray-based kinase inhibition assay by gold nanoparticle probes. Analytical Chemistry, 79, 773–777.

    Article  CAS  Google Scholar 

  152. Kerman, K., Chikae, M., Yamamura, S., & Tamiya, E. (2007). Gold nanoparticle-based electrochemical detection of protein phosphorylation. Analytica Chimica Acta, 588, 26–33.

    Article  CAS  Google Scholar 

  153. Green, K. D., & Pflum, M. K. (2007). Kinase-catalyzed biotinylation for phosphoprotein detection. Journal of the American Chemical Society, 129, 10–11.

    Article  CAS  Google Scholar 

  154. Wang, Z., Lee, J., Cossins, A. R., & Brust, M. (2005). Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Analytical Chemistry, 77, 5770–5774.

    Article  CAS  Google Scholar 

  155. Min, D. H., Su, J., & Mrksich, M. (2004). Profiling kinase activities by using a peptide chip and mass spectrometry. Angewandte Chemie (International ed. in English), 43, 5973–5977.

    Article  CAS  Google Scholar 

  156. Su, J., Bringer, M. R., Ismagilov, R. F., & Mrksich, M. (2005). Combining microfluidic networks and peptide arrays for multi-enzyme assays. Journal of the American Chemical Society, 127, 7280–7281.

    Article  CAS  Google Scholar 

  157. Sacco, F., Tinti, M., Palma, A., Ferrari, E., Nardozza, A. P., Hooft van Huijsduijnen, R., et al. (2009). Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases. Journal of Biological Chemistry, 284, 22048–22058.

    Article  CAS  Google Scholar 

  158. Kohn, M., Gutierrez-Rodriguez, M., Jonkheijm, P., Wetzel, S., Wacker, R., Schroeder, H., et al. (2007). A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angewandte Chemie (International ed. in English), 46, 7700–7703.

    Article  CAS  Google Scholar 

  159. Espanel, X., & van Huijsduijnen, R. H. (2005). Applying the SPOT peptide synthesis procedure to the study of protein tyrosine phosphatase substrate specificity: Probing for the heavenly match in vitro. Methods, 35, 64–72.

    Article  CAS  Google Scholar 

  160. Espanel, X., Huguenin-Reggiani, M., & Hooft van Huijsduijnen, R. (2002). The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities. Protein Science, 11, 2326–2334.

    Article  CAS  Google Scholar 

  161. Pasquali, C., Curchod, M. L., Walchli, S., Espanel, X., Guerrier, M., Arigoni, F., et al. (2003). Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Molecular Endocrinology, 17, 2228–2239.

    Article  CAS  Google Scholar 

  162. Duan, Y., & Laursen, R. A. (1994). Protease substrate specificity mapping using membrane-bound peptides. Analytical Biochemistry, 216, 431–438.

    Article  CAS  Google Scholar 

  163. Naus, S., Reipschlager, S., Wildeboer, D., Lichtenthaler, S. F., Mitterreiter, S., Guan, Z., et al. (2006). Identification of candidate substrates for ectodomain shedding by the metalloprotease-disintegrin ADAM8. Biology & Chemistry, 387, 337–346.

    Article  CAS  Google Scholar 

  164. Janssen, S., Jakobsen, C. M., Rosen, D. M., Ricklis, R. M., Reineke, U., Christensen, S. B., et al. (2004). Screening a combinatorial peptide library to develop a human glandular kallikrein 2-activated prodrug as targeted therapy for prostate cancer. Molecular Cancer Therapeutics, 3, 1439–1450.

    CAS  Google Scholar 

  165. Cedzich, A., Huttenlocher, F., Kuhn, B. M., Pfannstiel, J., Gabler, L., Stintzi, A., et al. (2009). The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). Journal of Biological Chemistry, 284, 14068–14078.

    Article  CAS  Google Scholar 

  166. Kaup, M., Dassler, K., Reineke, U., Weise, C., Tauber, R., & Fuchs, H. (2002). Processing of the human transferrin receptor at distinct positions within the stalk region by neutrophil elastase and cathepsin G. Biological Chemistry, 383, 1011–1020.

    Article  CAS  Google Scholar 

  167. Jones, C. H., Dexter, P., Evans, A. K., Liu, C., Hultgren, S. J., & Hruby, D. E. (2002). Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: The PapA pilin. Journal of Bacteriology, 184, 5762–5771.

    Article  CAS  Google Scholar 

  168. Reineke, U., Kurzhals, D., Köhler, A., Blex, C., McCarthy, J. E. G., Li, P., Germeroth, L., & Schneider-Mergener, J. (2001). High Throughput Screening Assay for the Identification of Protease Substrates. In J. Martinez & J. A. Fehrentz (Ed.), Peptides 2000: Proceedings of the twenty-sixth European peptide symposium, p 721.

  169. Reineke, U., & Hoffmüller, U. (2001). Applications of SPOT synthesis. American Biotechnology Labarotory, 50.

  170. Reineke, U., Bhargava, S., Schutkowski, M., Landgraf, C., Germeroth, L., Fischer, G., & Schneider-Mergener, J. (1999) In S. Bajusz & F. Hudecz (Ed.), Peptides 1998: Proceedings of the twenty-fifth European peptide symposium, p 562.

  171. Dekker, N., Cox, R. C., Kramer, R. A., & Egmond, M. R. (2001). Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries. Biochemistry, 40, 1694–1701.

    Article  CAS  Google Scholar 

  172. Sapsford, K. E., Sun, S., Francis, J., Sharma, S., Kostov, Y., & Rasooly, A. (2008). A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosensensors and Bioelectronics, 24, 618–625.

    Article  CAS  Google Scholar 

  173. Kramer, A., Affelt, R., & Schneider-Mergener, J. (1999). In S. Bajusz & F. Hudecz (Ed.), Peptides 1998: Proceedings of the twenty-fifth European peptide symposium, p 546.

  174. Kozlov, I. A., Melnyk, P. C., Hachmann, J. P., Srinivasan, A., Shults, M., Zhao, C., et al. (2008). A high-complexity, multiplexed solution-phase assay for profiling protease activity on microarrays. Combinatorial Chemistry & High Throughput Screening, 11, 24–35.

    Article  CAS  Google Scholar 

  175. Salisbury, C. M., Maly, D. J., & Ellman, J. A. (2002). Peptide microarrays for the determination of protease substrate specificity. Journal of the American Chemical Society, 124, 14868–14870.

    Article  CAS  Google Scholar 

  176. Collet, B. Y., Nagashima, T., Yu, M. S., & Pohl, N. L. (2009). Fluorous-based Peptide Microarrays for Protease Screening. Journal of Fluorine Chemistry, 130, 1042–1048.

    Article  CAS  Google Scholar 

  177. Kiyonaka, S., Sada, K., Yoshimura, I., Shinkai, S., Kato, N., & Hamachi, I. (2004). Semi-wet peptide/protein array using supramolecular hydrogel. Nature Materials, 3, 58–64.

    Article  CAS  Google Scholar 

  178. Winssinger, N., Ficarro, S., Schultz, P. G., & Harris, J. L. (2002). Profiling protein function with small molecule microarrays. Proceedings of the National Academy of Sciences of the United States of America, 99, 11139–11144.

    Article  CAS  Google Scholar 

  179. Winssinger, N., Harris, J. L., Backes, B. J., & Schultz, P. G. (2001). Evaluation of different chemical strategies for conjugation of oligonucleotides to peptides. Angewandte Chemie, 113, 3254–3258.

    Article  Google Scholar 

  180. Kozlov, I. A., Melnyk, P. C., Hachmann, J. P., Barker, D. L., Lebl, M., & Zhao, C. (2007). Evaluation of different chemical strategies for conjugation of oligonucleotides to peptides. Nucleosides Nucleotides Nucleic Acids, 26, 1353–1357.

    Article  CAS  Google Scholar 

  181. Winssinger, N., Damoiseaux, R., Tully, D. C., Geierstanger, B. H., Burdick, K., & Harris, J. L. (2004). PNA-encoded protease substrate microarrays. Chem Biol, 11, 1351–1360.

    Article  CAS  Google Scholar 

  182. Pianowski, Z. L., & Winssinger, N. (2008). Nucleic acid encoding to program self-assembly in chemical biology. Chemical Society Reviews, 37, 1330–1336.

    Article  CAS  Google Scholar 

  183. Warner, N., Wybenga-Groot, L. E., & Pawson, T. (2008). Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays. FEBS J, 275, 2561–2573.

    Article  CAS  Google Scholar 

  184. Moilanen, A. M., Karvonen, U., Poukka, H., Janne, O. A., & Palvimo, J. J. (1998). Activation of androgen receptor function by a novel nuclear protein kinase. Molecular Biology of the Cell, 9, 2527–2543.

    CAS  Google Scholar 

  185. De Keersmaecker, K., Versele, M., Cools, J., Superti-Furga, G., & Hantschel, O. (2008). Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia, 22, 2208–2216.

    Article  CAS  Google Scholar 

  186. Parikh, K., Diks, S. H., Tuynman, J. H., Verhaar, A., Lowenberg, M., Hommes, D. W., et al. (2009). Comparison of peptide array substrate phosphorylation of c-Raf and mitogen activated protein kinase kinase kinase 8. PLoS One, 4, e6440.

    Article  CAS  Google Scholar 

  187. Wang, H., & Brautigan, D. L. (2006). Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase. Molecular & Cell Proteomics, 5, 2124–2130.

    Article  CAS  Google Scholar 

  188. Coba, M. P., Pocklington, A. J., Collins, M. O., Kopanitsa, M. V., Uren, R. T., Swamy, S., Croning, M. D., Choudhary, J. S., & Grant, S. G. (2009) Neurotransmitters drive combinatorial multistate postsynaptic density networks. Science Signaling, 2, ra19.

  189. Merckx, A., Echalier, A., Langford, K., Sicard, A., Langsley, G., Joore, J., et al. (2008). Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure, 16, 228–238.

    Article  CAS  Google Scholar 

  190. Miller, M., Donat, S., Rakette, S., Stehle, T., Kouwen, T. R., Diks, S. H., et al. (2010). Staphylococcal PknB as the first prokaryotic representative of the proline-directed kinases. PLoS One, 5, e9057.

    Article  CAS  Google Scholar 

  191. Ritsema, T., Brodmann, D., Diks, S. H., Bos, C. L., Nagaraj, V., Pieterse, C. M., et al. (2009). Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS One, 4, e6605.

    Article  Google Scholar 

  192. Ritsema, T., van Zanten, M., Leon-Reyes, A., Voesenek, L. A., Millenaar, F. F., Pieterse, C. M., et al. (2010). Kinome profiling reveals an interaction between jasmonate, salicylate and light control of hyponastic petiole growth in Arabidopsis thaliana. PLoS One, 5, e14255.

    Article  CAS  Google Scholar 

  193. Milani, R., Ferreira, C. V., Granjeiro, J. M., Paredes-Gamero, E. J., Silva, R. A., Justo, G. Z., et al. (2010). Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion. Journal of Cell Biochemistry, 109, 957–966.

    CAS  Google Scholar 

  194. Kemp, B. E., Graves, D. J., Benjamini, E., & Krebs, E. G. (1977). Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. Journal of Biological Chemistry, 252, 4888–4894.

    CAS  Google Scholar 

  195. Pinilla, C., Appel, J. R., & Houghten, R. A. (1993). Functional importance of amino acid residues making up peptide antigenic determinants. Molecular Immunology, 30, 577–585.

    Article  CAS  Google Scholar 

  196. Leung, G. C., Ho, C. S., Blasutig, I. M., Murphy, J. M., & Sicheri, F. (2007). Determination of the Plk4/Sak consensus phosphorylation motif using peptide spots arrays. FEBS Letters, 581, 77–83.

    Article  CAS  Google Scholar 

  197. Versele, M., Talloen, W., Rockx, C., Geerts, T., Janssen, B., Lavrijssen, T., et al. (2009). Response prediction to a multitargeted kinase inhibitor in cancer cell lines and xenograft tumors using high-content tyrosine peptide arrays with a kinetic readout. Molecular Cancer Therapeutics, 8, 1846–1855.

    Article  CAS  Google Scholar 

  198. Bratland, A., Boender, P. J., Hoifodt, H. K., Ostensen, I. H., Ruijtenbeek, R., Wang, M. Y., et al. (2009). Osteoblast-induced EGFR/ERBB2 signaling in androgen-sensitive prostate carcinoma cells characterized by multiplex kinase activity profiling. Clinical & Experimental Metastasis, 26, 485–496.

    Article  CAS  Google Scholar 

  199. Schrage, Y. M., Briaire-de Bruijn, I. H., de Miranda, N. F., van Oosterwijk, J., Taminiau, A. H., van Wezel, T., et al. (2009). Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Research, 69, 6216–6222.

    Article  CAS  Google Scholar 

  200. Roorda, B. D., Ter Elst, A., Diks, S. H., Meeuwsen-de Boer, T. G., Kamps, W. A., & de Bont, E. S. (2009). PTK787/ZK 222584 inhibits tumor growth promoting mesenchymal stem cells: Kinase activity profiling as powerful tool in functional studies. Cancer Biology & Therapy, 8, 1239–1248.

    Article  CAS  Google Scholar 

  201. Schmerwitz, U. K., Sass, G., Khandoga, A. G., Joore, J., Mayer, B. A., Berberich, N., et al. (2011). Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 280–288.

    Article  CAS  Google Scholar 

  202. Tuynman, J. B., Vermeulen, L., Boon, E. M., Kemper, K., Zwinderman, A. H., Peppelenbosch, M. P., et al. (2008). Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Research, 68, 1213–1220.

    Article  CAS  Google Scholar 

  203. Rothmeier, A. S., Ischenko, I., Joore, J., Garczarczyk, D., Furst, R., Bruns, C. J., et al. (2009). Investigation of the marine compound spongistatin 1 links the inhibition of PKCalpha translocation to nonmitotic effects of tubulin antagonism in angiogenesis. FASEB Journal, 23, 1127–1137.

    Article  CAS  Google Scholar 

  204. de Borst, M. H., Diks, S. H., Bolbrinker, J., Schellings, M. W., van Dalen, M. B., Peppelenbosch, M. P., et al. (2007). Profiling of the renal kinome: A novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. American Journal of Physiology, 293, F428–F437.

    Article  CAS  Google Scholar 

  205. Ghosh, G., Yan, X., Lee, A. G., Kron, S. J., & Palecek, S. P. (2010). Quantifying the sensitivities of EGF receptor (EGFR) tyrosine kinase inhibitors in drug resistant non-small cell lung cancer (NSCLC) cells using hydrogel-based peptide array. Biosensors and Bioelectronics, 26, 424–431.

    Article  CAS  Google Scholar 

  206. Parikh, K., Poppema, S., Peppelenbosch, M. P., & Visser, L. (2009). Extracellular ligation-dependent CD45RB enzymatic activity negatively regulates lipid raft signal transduction. Blood, 113, 594–603.

    Article  CAS  Google Scholar 

  207. Bowick, G. C., Fennewald, S. M., Scott, E. P., Zhang, L., Elsom, B. L., Aronson, J. F., et al. (2007). Identification of differentially activated cell-signaling networks associated with pichinde virus pathogenesis by using systems kinomics. Journal of Virology, 81, 1923–1933.

    Article  CAS  Google Scholar 

  208. Sikkema, A. H., Diks, S. H., den Dunnen, W. F., ter Elst, A., Scherpen, F. J., Hoving, E. W., et al. (2009). Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Research, 69, 5987–5995.

    Article  CAS  Google Scholar 

  209. Ter Elst, A., Diks, S. H., Kampen, K. R., Hoogerbrugge, P. M., Ruijtenbeek, R., Boender, P. J., et al. (2010). Identification of new possible targets for leukemia treatment by kinase activity profiling. Leukemia & Lymphoma, 52, 122–130.

    Article  CAS  Google Scholar 

  210. Jinnin, M., Medici, D., Park, L., Limaye, N., Liu, Y., Boscolo, E., et al. (2008). Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Medicine, 14, 1236–1246.

    Article  CAS  Google Scholar 

  211. Folkvord, S., Flatmark, K., Dueland, S., de Wijn, R., Groholt, K. K., Hole, K. H., et al. (2010). Prediction of response to preoperative chemoradiotherapy in rectal cancer by multiplex kinase activity profiling. International Journal of Radiation Oncology, Biology, Physics, 78, 555–562.

    Article  CAS  Google Scholar 

  212. Taher, T. E., Parikh, K., Flores-Borja, F., Mletzko, S., Isenberg, D. A., Peppelenbosch, M. P., et al. (2010). Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. Arthritis and Rheumatism, 62, 2412–2423.

    Article  CAS  Google Scholar 

  213. Vivanco, I., Rohle, D., Versele, M., Iwanami, A., Kuga, D., Oldrini, B., et al. (2010). The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proceedings of the National Academy of Sciences United States of America, 107, 6459–6464.

    Article  CAS  Google Scholar 

  214. Zerweck, J., Masch, A., & Schutkowski, M. (2009). Peptide microarrays for profiling of modification state-specific antibodies. Methods in Molecular Biology, 524, 169–180.

    Article  CAS  Google Scholar 

  215. Vlad, F., Turk, B. E., Peynot, P., Leung, J., & Merlot, S. (2008). A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant Journal, 55, 104–117.

    Article  CAS  Google Scholar 

  216. Holt, L. J., Hutti, J. E., Cantley, L. C., & Morgan, D. O. (2007). Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Molecular Cell, 25, 689–702.

    Article  CAS  Google Scholar 

  217. Hutti, J. E., Jarrell, E. T., Chang, J. D., Abbott, D. W., Storz, P., Toker, A., et al. (2004). A rapid method for determining protein kinase phosphorylation specificity. Nature Methods, 1, 27–29.

    Article  CAS  Google Scholar 

  218. Prisic, S., Dankwa, S., Schwartz, D., Chou, M. F., Locasale, J. W., Kang, C. M., et al. (2010). Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 107, 7521–7526.

    Article  CAS  Google Scholar 

  219. Zhu, H., Klemic, J. F., Chang, S., Bertone, P., Casamayor, A., Klemic, K. G., et al. (2000). Analysis of yeast protein kinases using protein chips. Nature Genetics, 26, 283–289.

    Article  CAS  Google Scholar 

  220. Hallows, W. C., Yu, W., Smith, B. C., Devires, M. K., Ellinger, J. J., Someya, S., et al. (2011). Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Molecular Cell, 41, 139–149.

    Article  CAS  Google Scholar 

  221. Sun, H., Tan, L. P., Gao, L., & Yao, S. Q. (2009). High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray. Chemical Communications (Camb), 677–679.

  222. Ferrari, E., Tinti, M., Costa, S., Corallino, S., Nardozza, A. P., Chatraryamontri, A., et al. (2010). Identification of new substrates of the protein tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. Journal of Biological Chemistry, 286, 4173–4185.

    Article  CAS  Google Scholar 

  223. Kishimoto, A., Nishiyama, K., Nakanishi, H., Uratsuji, Y., Nomura, H., Takeyama, Y., et al. (1985). Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′-monophosphate-dependent protein kinase. Journal of Biological Chemistry, 260, 12492–12499.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Schutkowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, A., Stangl, G.I. & Schutkowski, M. Deciphering Enzyme Function Using Peptide Arrays. Mol Biotechnol 49, 283–305 (2011). https://doi.org/10.1007/s12033-011-9402-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9402-x

Keywords

Navigation