Skip to main content
Log in

Characterization and Promoter Analysis of a Cotton RING-Type Ubiquitin Ligase (E3) Gene

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 338 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus, and is classified as a C3H2C3-type RING protein. Blast searches show that GhRING1 has the highest homology to At3g19950, a zinc finger family protein from Arabidopsis. Real time RT–PCR analysis indicates that the GhRING1 gene is expressed in cotton fibers in a developmental manner. The transcript level of GhRING1 gene reaches a maximum in elongating fibers at 15 days post-anthesis (DPA). In vitro auto-ubiquitination assays using wheat germ extract and a reconstitution system demonstrate that GhRING1 has the ubiquitin E3 ligase activity. The histochemical GUS assay was performed to analyze tissue specificity of the GhRING1 and At3g19950 promoters in transgenic Arabidopsis plants. The GUS assay shows that the promoter of At3g19950 is highly activated in leaves, roots, trichomes, and also in anthers and stigma of flowers. In contrast, the GUS expression directed by the GhRING1 promoter is only located at stipules and anthers. The expression pattern of GhRING1 suggests that protein ubiquitination and turnover may be involved in transition to different stages of cotton fiber development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. John, M. E., & Crow, L. J. (1992). Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 89, 5769–5773.

    Article  CAS  Google Scholar 

  2. Kim, H. J., & Triplett, B. A. (2001). Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology, 127, 1361–1366.

    Article  CAS  Google Scholar 

  3. Graves, D. A., & Stewart, J. M. (1988). Analysis of the protein constituency of developing cotton fibers. Journal of Experimental Botany, 39, 59–69.

    Article  Google Scholar 

  4. DeLanghe, E., Kosmidou-Dimitropoulou, S., & Waterkeyn, L. (1978). Effect of hormones on nucleolar growth and vacuolation in elongating cotton fibers. Planta, 140, 269–273.

    Article  CAS  Google Scholar 

  5. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  Google Scholar 

  6. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.

    Article  CAS  Google Scholar 

  7. Moon, J., Parry, G., & Estelle, M. (2004). The ubiquitin-proteasome pathway and plant development. Plant Cell, 16, 3181–3195.

    Article  CAS  Google Scholar 

  8. Freemont, P. S., Hanson, I. M., & Trowsdale, J. (1991). A novel cysteine-rich sequence motif. Cell, 64, 483–484.

    Article  CAS  Google Scholar 

  9. Aravind, L., & Koonin, E. V. (2000). The U box is a modified RING finger: A common domain in ubiquitination. Current Biology, 10, R132–R134.

    Article  CAS  Google Scholar 

  10. Kosarev, P., Mayer, K. F., & Hardtke, C. S. (2002). Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biology, 3, RESEARCH0016.1-0016.12.

  11. Zhang, X. D., Jenkins, J. N., Callahan, F. E., Creech, R. G., Si, Y., McCarty, J. C., et al. (2003). Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium). Biochimica et Biophysica Acta, 1625, 269–279.

    CAS  Google Scholar 

  12. Wan, C. Y., & Wilkins, T. A. (1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry, 223, 7–12.

    Article  CAS  Google Scholar 

  13. Shi, R., & Chiang, V. L. (2005). Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 39, 519–525.

    Article  CAS  Google Scholar 

  14. Funukawa, M., Andrews, P. S., & Xiong, Y. (2005). Assays for RING family ubiquitin ligases. In C. Patterson & D. Cyr (Eds.), Ubiquitin-proteasome protocols (pp. 37–46). Totowa, NJ: Humana.

    Chapter  Google Scholar 

  15. Walkerpeach, C. R., & Velton, J. (1994). Agrobacterium-mediated gene transfer to plant cells: Cointegrate and binary vector systems. Belgium: Kluwer.

    Google Scholar 

  16. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  Google Scholar 

  17. Gallagher, S. R. (1992). GUS Protocols: Using the GUS gene as a reporter of gene expression. San Diego, CA: Academic Press.

    Google Scholar 

  18. Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132.

    Article  CAS  Google Scholar 

  19. Matsuda, N., Suzuki, T., Tanaka, K., & Nakano, A. (2001). Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. Journal of Cell Science, 114, 1949–1957.

    CAS  Google Scholar 

  20. Hovav, R., Udall, J. A., Hovav, E., Rapp, R., Flagel, L., & Wendel, J. F. (2008). A majority of cotton genes are expressed in single-celled fiber. Planta, 227, 319–329.

    Article  CAS  Google Scholar 

  21. Al-Ghazi, Y., Bourot, S., Arioli, T., Dennis, E. S., & Llewellyn, D. J. (2009). Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant and Cell Physiology, 50, 1364–1381.

    Article  CAS  Google Scholar 

  22. Raven, P. H., Evert, R. F., & Eichhorn, S. E. (1999). Biology of plants (6th ed., p. 624). New York, NY: W. H. Freeman and Company.

    Google Scholar 

  23. Tsukaya, H., & Uchimiya, H. (1997). Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: Combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Molecular and General Genetics, 256, 231–238.

    Article  CAS  Google Scholar 

  24. Uchida, N., Townsley, B., Chung, K. H., & Sinha, N. (2007). Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proceedings of the National Academy of Sciences of the United States of America, 104, 15953–15958.

    Article  CAS  Google Scholar 

  25. Esau, K. (1953). Plant anatomy (2nd ed., p. 767). New York, NY: Wiley.

    Google Scholar 

  26. Arpat, A., Waugh, M., Sullivan, J. P., Gonzales, M., Frisch, D., Main, D., et al. (2004). Functional genomics of cell elongation in developing cotton fibers. Plant Molecular Biology, 54, 911–929.

    Article  CAS  Google Scholar 

  27. Rong, J., Pierce, G. J., Waghmare, V. N., Rogers, C. J., Desai, A., Chee, P. W., et al. (2005). Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theoretical and Applied Genetics, 111, 1137–1146.

    Article  CAS  Google Scholar 

  28. Desai, A., Chee, P. W., May, O. L., & Paterson, A. H. (2008). Correspondence of trichrome mutations in diploid and tetraploid cottons. Journal of Heredity, 99, 182–186.

    Article  CAS  Google Scholar 

  29. Shimizu, R., Ji, J., Kelsey, E., Ohtsu, K., Schnable, P. S., & Scanlon, M. J. (2009). Tissue specificity and evolution of meristematic WOX3 function. Plant Physiology, 149, 841–850.

    Article  CAS  Google Scholar 

  30. Colmenero-Flores, J. M., Martinez, G., Gamba, G., Vazquez, N., Iglesias, D. J., Brumos, J., et al. (2007). Identification and functional characterization of cation-chloride cotransporters in plants. The Plant Journal, 50, 278–292.

    Article  CAS  Google Scholar 

  31. Aloni, R., Schwalm, K., Langhans, M., & Ullrich, C. I. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta, 216, 841–853.

    CAS  Google Scholar 

  32. Figueroa-Balderas, R. E., Garcia-Ponce, B., & Rocha-Sosa, M. (2006). Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme A carboxylase. Plant Physiology, 142, 609–619.

    Article  CAS  Google Scholar 

  33. Tarutani, Y., Morimoto, T., Sasaki, A., Yasuda, M., Nakashita, H., Yoshida, S., et al. (2004). Molecular characterization of two highly homologous receptor-like kinase genes, RLK902 and RKL1, in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 68, 1935–1941.

    Article  CAS  Google Scholar 

  34. Meyer, S., Lauterbach, C., Niedermeier, M., Barth, I., Sjolund, R. D., & Sauer, N. (2004). Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology, 134, 684–693.

    Article  CAS  Google Scholar 

  35. Lee, J. J., Woodward, A. W., & Chen, Z. J. (2007). Gene expression changes and early events in cotton fibre development. Annals of Botany, 100, 1391–1401.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martin Wubben for providing technical assistance in using the Nikon SMZ1000 Stereomicroscope. This study was supported by Special Research Initiative (SRI) grants from Mississippi Agricultural and Forestry Experiment Station (MAFES), approved for publication as Journal Article No. J-11733 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Din-Pow Ma.

Additional information

The nucleotide sequence data in this article have been submitted to the GenBank Nucleotide Sequence DataBases under the accession number GU229884.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, MH., Saha, S., Jenkins, J.N. et al. Characterization and Promoter Analysis of a Cotton RING-Type Ubiquitin Ligase (E3) Gene. Mol Biotechnol 46, 140–148 (2010). https://doi.org/10.1007/s12033-010-9280-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9280-7

Keywords

Navigation