Skip to main content

Advertisement

Log in

Recombinant Baculovirus as a Highly Potent Vector for Gene Therapy of Human Colorectal Carcinoma: Molecular Cloning, Expression, and In Vitro Characterization

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Present therapeutic strategies for most cancers are restricted mainly to the primary tumors and are also not very effective in controlling metastatic states. Alternatively, gene therapy can be a potential option for treating such cancers. Currently mammalian viral-based cancer gene therapy is the most popular approach, but the efficacy has been shown to be quite low in clinical trials. In this study, for the first time, the insect cell-specific baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been evaluated as a vector for gene delivery to colorectal cancer cells. Experiments involving factorial design were employed to study the individual and combined effects of different parameters such as multiplicity of infection (MOI), viral incubation time and epigenetic factors on transduction efficiency. The results demonstrate that baculovirus gene delivery system holds immense potential for development of a new generation of highly effective virotherapy for colorectal, as well as other major carcinomas (breast, pancreas, and brain), and offers significant benefits to traditional animal virus-based vectors with respect to safety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y. P., Xu, J. Q., Murray, T., et al. (2008). Cancer statistics, 2008. Ca—A Cancer Journal for Clinicians, 58, 71–96.

    Article  Google Scholar 

  2. Midgley, R., & Kerr, D. (1999). Colorectal cancer. Lancet, 353, 391–399.

    Article  CAS  Google Scholar 

  3. Birkenkamp-Demtroder, K., Christensen, L. L., Olesen, S. H., Frederiksen, C. M., Laiho, P., Aaltonen, L. A., et al. (2002). Gene expression in colorectal cancer. Cancer Research, 62, 4352–4363.

    CAS  Google Scholar 

  4. Palmer, D. H., Chen, M. J., & Kerr, D. J. (2002). Gene therapy for colorectal cancer. British Medical Bulletin, 64, 201–225.

    Article  CAS  Google Scholar 

  5. Yamamoto, T. Y., Okuda, J. O., Toyoda, M. T., & Tanigawa, N. T. (2002). Gene therapy for colon cancer using survivin antisense expressing replication-incompetent adenoviral vectors. International Journal of Cancer, (Suppl 13), 125.

  6. Hemminki, A. (2002). From molecular changes to customised therapy. European Journal of Cancer, 38, 333–338.

    Article  CAS  Google Scholar 

  7. Kanerva, A., & Hemminki, A. (2004). Modified adenoviruses for cancer gene therapy. International Journal of Cancer, 110, 475–480.

    Article  CAS  Google Scholar 

  8. Chung-Faye, G. A., Chen, M. J., Green, N. K., Burton, A., Anderson, D., Mautner, V., et al. (2001). In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Therapy, 8, 1547–1554.

    Article  CAS  Google Scholar 

  9. Bazan-Peregrino, M., Sainson, R., Carlisle, R., Waters, R., Harris, A. L., Hernandez-Alcoceba, R., et al. (2008). Virotherapy expressing regulatory angiogenic gene therapy in treatment of breast cancer. Human Gene Therapy, 19, 415.

    Article  Google Scholar 

  10. Cafferata, E. G., Maccio, D. R., Lopez, M. V., Viale, D. L., Carbone, C., Mazzolini, G., et al. (2009). A novel A33 promoter-based conditionally replicative adenovirus suppresses tumor growth and eradicates hepatic metastases in human colon cancer models. Clinical Cancer Research, 15, 3037–3049.

    Article  CAS  Google Scholar 

  11. Huang, Q., Ji, X., Zhang, J., Cheng, L., Wei, F., Li, H., et al. (2009). Oncolytic adenovirus delivering herpes simplex virus thymidine kinase suicide gene reduces the growth of human retinoblastoma in an in vivo mouse model. Experimental Eye Research, 89, 193–199.

    Article  Google Scholar 

  12. Rognoni, E., Widmaier, M., Haczek, C., Mantwill, K., Holzmuller, R., Gansbacher, B., et al. (2009). Adenovirus-based virotherapy enabled by cellular YB-1 expression in vitro and in vivo. Cancer Gene Therapy, 16, 753–763.

    Article  CAS  Google Scholar 

  13. Wang, G., Li, G., Liu, H., Yang, C., Yang, X., Jin, J., et al. (2009). E1B 55-kDa deleted, Ad5/F35 fiber chimeric adenovirus, a potential oncolytic agent for B-lymphocytic malignancies. Journal of Gene Medicine, 11, 477–485.

    Article  CAS  Google Scholar 

  14. Ying, B., Toth, K., Spencer, J. F., Meyer, J., Tollefson, A. E., Patra, D., et al. (2009). INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies. Cancer Gene Therapy, 16, 625–637.

    Article  CAS  Google Scholar 

  15. Koyama, F., Sawada, H., Hirao, T., Fujii, H., Hamada, H., & Nakano, H. (2000). Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of Escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine. Cancer Gene Therapy, 7, 1015–1022.

    Article  CAS  Google Scholar 

  16. Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., & Strauss, M. (1995). Efficient gene-transfer into human hepatocytes by baculovirus vectors. Proceedings of the National Academy of Sciences of the United States of America, 92, 10099–10103.

    Article  CAS  Google Scholar 

  17. Stanbridge, L. J., Dussupt, V., & Maitland, N. J. (2003). Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer. Journal of Biomedicine and Biotechnology, 2003, 79–91.

    Article  Google Scholar 

  18. Nesbit, M., Fu, Z. F., Mcdonaldsmith, J., Steplewski, Z., & Curtis, P. J. (1992). Production of a functional monoclonal-antibody recognizing human colorectal-carcinoma cells from a baculovirus expression system. Journal of Immunological Methods, 151, 201–208.

    Article  CAS  Google Scholar 

  19. Ozawa, S., Lu, W. X., Bucana, C. D., Kanayama, H. O., Shinohara, H., Fidler, I. J., et al. (2003). Regression of primary murine colon cancer and occult liver metastasis by intralesional injection of lyophilized preparation of insect cells producing murine interferon-beta. International Journal of Oncology, 22, 977–984.

    CAS  Google Scholar 

  20. Song, S. U., & Boyce, F. M. (2001). Combination treatment for osteosarcoma with baculoviral vector mediated gene therapy (p53) and chemotherapy (adriamycin). Experimental and Molecular Medicine, 33, 46–53.

    CAS  Google Scholar 

  21. Huang, W., Tian, X. L., Wu, Y. L., Zhong, J., Yu, L. F., Hu, S. P., et al. (2008). Suppression of gastric cancer growth by baculovirus vector-mediated transfer of normal epithelial cell specific-1 gene. World Journal of Gastroenterology, 14, 5810–5815.

    Article  CAS  Google Scholar 

  22. Mirzaei, M., Xu, Y., Elias, C. B., & Prakash, S. (2009). Nonviral production of human interleukin-7 in spodoptera frugiperda insect cells as a soluble recombinant protein. Journal of Biomedicine and Biotechnology, 2009, 8 pp. doi:10.1155/2009/637942.

  23. Jardin, B. A., Montes, J., Lanthier, S., Tran, R., & Elias, C. (2007). High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: comparison to a batch Sf-9-BEV system. Biotechnology and Bioengineering, 97, 332–345.

    Article  CAS  Google Scholar 

  24. Jardin, B. A., Zhao, Y., Selvaraj, M., Montes, J., Tran, R., Prakash, S., et al. (2008). Expression of SEAP (secreted alkaline phosphatase) by baculovirus mediated transduction of HEK 293 cells in a hollow fiber bioreactor system. Journal of Biotechnology, 135, 272–280.

    Article  CAS  Google Scholar 

  25. Bilello, J. P., Delaney, W. E., Boyce, F. M., & Isom, H. C. (2001). Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. Journal of Virology, 75, 9857–9871.

    Article  CAS  Google Scholar 

  26. Boyce, F. M., & Bucher, N. L. R. (1996). Baculovirus-mediated gene transfer into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 2348–2352.

    Article  Google Scholar 

  27. Wang, C. Y., & Wang, S. (2005). Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain. Human Gene Therapy, 16, 1219–1226.

    Article  CAS  Google Scholar 

  28. Marks, P. A., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T., & Kelly, W. K. (2001). Histone deacetylases and cancer: causes and therapies. Nature Reviews Cancer, 1, 194–202.

    Article  CAS  Google Scholar 

  29. Rein, D. T., Breidenbach, M., & Curiel, D. T. (2006). Current developments in adenovirus-based cancer gene therapy. Future Oncology, 2, 137–143.

    Article  CAS  Google Scholar 

  30. Makela, A. R., Matilainen, H., White, D. J., Ruoslahti, E., & Oker-Blom, C. (2006). Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. Journal of Virology, 80, 6603–6611.

    Article  CAS  Google Scholar 

  31. Kronschnabl, M., Marschall, M., & Stamminger, T. (2002). Efficient and tightly regulated expression systems for the human cytomegalovirus major transactivator protein IE2p86 in permissive cells. Virus Research, 83, 89–102.

    Article  CAS  Google Scholar 

  32. Ma, L., Tamarina, N., Wang, Y., Kuznetsov, A., Patel, N., Kending, C., et al. (2000). Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes, 49, 1986–1991.

    Article  CAS  Google Scholar 

  33. Zeng, J., Du, J., Zhao, Y., Palanisamy, N., & Wang, S. (2007). Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells, 25, 1055–1061.

    Article  CAS  Google Scholar 

  34. Chuang, C. K., Wong, T. H., Hwang, S. M., Chang, Y. H., Chen, G. Y., Chiu, Y. C., et al. (2009). Baculovirus transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. Molecular Therapy, 17, 889–896.

    Article  CAS  Google Scholar 

  35. Grassi, G., Kohn, H., Dapas, B., Farra, R., Platz, J., Engel, S., et al. (2006). Comparison between recombinant baculo- and adenoviral-vectors as transfer system in cardiovascular cells. Archives of Virology, 151, 255–271.

    Article  CAS  Google Scholar 

  36. Nakamichi, K., Matsumoto, Y., Tohya, Y., & Otsuka, H. (2002). Induction of apoptosis in rabbit kidney cell under high-level expression of bovine herpesvirus 1 U(s) ORF8 product. Intervirology, 45, 85–93.

    Article  CAS  Google Scholar 

  37. Cheng, T., Xu, C. Y., Wang, Y. B., Chen, M., Wu, T., Zhang, J., et al. (2004). A rapid and efficient method to express target genes in mammalian cells by baculovirus. World Journal of Gastroenterology, 10, 1612–1618.

    CAS  Google Scholar 

  38. Ping, W., Ge, J., Li, S., Zhou, H., Wang, K., Feng, Y., et al. (2006). Baculovirus-mediated gene expression in chicken primary cells. Avian Diseases, 50, 59–63.

    Article  Google Scholar 

  39. Leisy, D. J., Lewis, T. D., Leong, J. A., & Rohrmann, G. F. (2003). Transduction of cultured fish cells with recombinant baculoviruses. Journal of General Virology, 84, 1173–1178.

    Article  CAS  Google Scholar 

  40. Senior, K. (2000). Gene therapy: a rocky start to the new millennium. Molecular Medicine Today, 6, 93.

    Article  CAS  Google Scholar 

  41. Huser, A., Rudolph, M., & Hofmann, C. (2001). Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nature Biotechnology, 19, 451–455.

    Article  CAS  Google Scholar 

  42. Hofmann, C., & Strauss, M. (1998). Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Therapy, 5, 531–536.

    Article  CAS  Google Scholar 

  43. Clay, W. C., Condreay, J. P., Moore, L. B., Weaver, S. L., Watson, M. A., Kost, T. A., et al. (2003). Recombinant baculoviruses used to study estrogen receptor function in human osteosarcoma cells. Assay Drug Development Technologies, 1, 801–810.

    Article  CAS  Google Scholar 

  44. Song, J., Liang, C.-y., & Chen, X.-w. (2007). Baculovirus-mediated expression of p35 confers resistance to apoptosis in human embryo kidney 293 cells. Virologica Sinica, 22, 389–396.

    Article  CAS  Google Scholar 

  45. Bossuyt, W., Kazanjian, A., De Geest, N., Van Kelst, S., De Hertogh, G., Geboes, K., et al. (2009). Atonal homolog 1 is a tumor suppressor gene. Plos Biology, 7, 311–326.

    CAS  Google Scholar 

  46. Kerr, D. (2003). Clinical development of gene therapy for colorectal cancer. Nature Reviews Cancer, 3, 615–622.

    Article  CAS  Google Scholar 

  47. Obermiller, P. S., Tait, D. L., & Holt, J. T. (2000). Gene therapy for carcinoma of the breast: therapeutic genetic correction strategies. Breast Cancer Research, 2, 28–31.

    Article  CAS  Google Scholar 

  48. Liu, F. (2001). SMAD4/DPC4 and pancreatic cancer survival—Commentary re: M. Tascilar et al., The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clinical Cancer Research, 7: 4115–4121, 2001. Clinical Cancer Research, 7, 3853–3856.

    CAS  Google Scholar 

  49. Vollmer, C. M., Ribas, A., Butterfield, L. H., Dissette, V. B., Andrews, K. J., Eilber, F. C., et al. (1999). p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Research, 59, 4369–4374.

    CAS  Google Scholar 

  50. Zeng, Y., Jiang, J., Huebener, N., Wenkel, J., Gaedicke, G., Xiang, R., et al. (2005). Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Letters, 228, 187–193.

    Article  CAS  Google Scholar 

  51. Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Lovino, F., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1, 389–402.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance received from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Dr. S. Prakash. A.P. acknowledges financial support from Fonds de la recherche en santé du Québec (FRSQ), Quebec, Canada. A.K. acknowledges the Alexander Graham Bell Post Graduate Scholarship—Doctoral from NSERC. M.M. acknowledges the support of the McGill Faculty of Medicine Internal Scholarship. The authors would like to thank B. Boulay, R. Tran, and J. Montes from National Research Council Canada (NRC-BRI) for their technical advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash.

Additional information

Arun Kulamarva and Meenakshi Malhotra contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, A., Jardin, B.A., Kulamarva, A. et al. Recombinant Baculovirus as a Highly Potent Vector for Gene Therapy of Human Colorectal Carcinoma: Molecular Cloning, Expression, and In Vitro Characterization. Mol Biotechnol 45, 129–139 (2010). https://doi.org/10.1007/s12033-010-9248-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9248-7

Keywords

Navigation