Skip to main content

Advertisement

Log in

Recombinant Protein Expression in Leishmania tarentolae

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A variety of recombinant protein expression systems have been developed for heterologous genes in both prokaryotic and eukaryotic systems such as bacteria, yeast, mammals, insects, transgenic animals, and plants. Recently Leishmania tarentolae, a trypanosomatid protozoan parasite of the white-spotted wall gecko (Tarentola annularis), has been suggested as candidate for heterologous genes expression. Trypanosomatidae are rich in glycoproteins, which can account for more than 10% of total protein; the oligosaccharide structures are similar to those of mammals with N-linked galactose, and fucose residues. To date several heterologous proteins have been expressed in L. tarentolae including both cytoplasmic enzymes and membrane receptors. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of those tools coupled with a better understanding of the biology of Leishmania species will lead to value and power in commercial and research labs alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cross, G. A. (2005). Trypanosomes at the gates. Science, 309, 355.

    Article  CAS  Google Scholar 

  2. Teixeira, S. M. (1998). Control of gene expression in Trypanosomatidae. Brazilian Journal of Medical and Biological Research, 31, 1503–1516.

    CAS  Google Scholar 

  3. Handman, E. (1999). Cell biology of Leishmania. Advances in Parasitology, 44, 1–39.

    Article  CAS  Google Scholar 

  4. Clayton, C. E. (1999). Genetic manipulation of kinetoplastida. Parasitology Today, 15, 372–378.

    Article  CAS  Google Scholar 

  5. Beverley, S. M. (2003). Protozomics: Trypanosomatid parasite genetics comes of age. Nature Reviews Genetics, 4(1), 11–19.

    Article  CAS  Google Scholar 

  6. Banuls, A. L., Hide, M., & Prugnolle, F. (2007). Leishmania and the leishmaniases: A parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Advances in Parasitology, 64, 1–109.

    Article  Google Scholar 

  7. Banuls, A. L., Hide, M., & Tibayrenc, M. (1999). Molecular epidemiology and evolutionary genetics of Leishmania parasites. International Journal for Parasitology, 29(8), 1137–1147.

    Article  CAS  Google Scholar 

  8. LEXY essence (Jena Bioscience, http://www.jenabioscience.com/).

  9. Breitling, R., Klingner, S., Callewaert, N., Pietrucha, R., Geyer, A., Ehrlich, G., et al. (2002). Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expression and Purification, 25, 209–218.

    Article  CAS  Google Scholar 

  10. Wirtz, E., Hartmann, C., & Clayton, C. (1994). Gene expression mediated by bacteriophage T3 and T7 RNA polymerase in transgenic trypanosomes. Nucleic Acids Research, 22, 3887–3894.

    Article  CAS  Google Scholar 

  11. Wirtz, E., Leal, C., Ochatt, G. A., & Cross, A. (1999). Tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Molecular and Biochemical Parasitology, 99, 89–101.

    Article  CAS  Google Scholar 

  12. Yan, S., Myler, P. J., & Stuart, K. (2001). Tetracycline regulated gene expression in Leishmania donovani. Molecular and Biochemical Parasitology, 112, 61–69.

    Article  CAS  Google Scholar 

  13. Kushnir, S., Gase, K., Breitling, R., et al. (2005). Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expression and Purification, 42, 37–46.

    Article  CAS  Google Scholar 

  14. Misslitz, A., Mottram, J. C., Overath, P., & Aebischer, T. (2000). Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania anamastigotes. Molecular and Biochemical Parasitology, 107, 251–261.

    Article  CAS  Google Scholar 

  15. Goyard, S., Tosi, L. R., Gouzova, J., et al. (2001). New Mos1 mariner transposons suitable for the recovery of gene fusions in vivo and in vitro. Gene, 280, 97–105.

    Article  CAS  Google Scholar 

  16. Papadopoulou, B., & Dumas, C. (1997). Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Research, 25, 4278–4286.

    Article  CAS  Google Scholar 

  17. Bell, J. S., & McCulloch, R. (2003). Mismatch repair regulates homologous recombination, but has little influence on antigenic variation, in Trypanosoma brucei. Journal of Biological Chemistry, 278, 45182–45188.

    Article  CAS  Google Scholar 

  18. Wickstead, B., Ersfeld, K., & Gull, K. (2003). The frequency of gene targeting in Trypanosoma brucei is independent of a target site copy number. Nucleic Acids Research, 31, 3993–4000.

    Article  CAS  Google Scholar 

  19. Zheng, H., & Wilson, J. H. (1990). Gene targeting in normal and amplified cell lines. Nature, 344, 170–173.

    Article  CAS  Google Scholar 

  20. Wilson, J. H., Leung, W. Y., Bosco, G., et al. (1994). The frequency of gene targeting in yeast depends on the number of target copies. Proceedings of the National Academy of Sciences of the United States of America, 91, 177–181.

    Article  CAS  Google Scholar 

  21. Beverley, S. M., & Clayton, C. E. (1993). Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods in Molecular Biology, 21, 333–348.

    CAS  Google Scholar 

  22. Ferguson, M. A. (1997). The surface glycoconjugates of trypanosomatid parasites. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352, 1295–1302.

    Article  CAS  Google Scholar 

  23. Parodi, A. J. (1993). N-glycosylation in trypanosomatid protozoa. Glycobiology, 3, 193–199.

    Article  CAS  Google Scholar 

  24. Belen, C. M., Gao, W., Herrera, M., Alroy, J., Moore, J. B., Beverley, S. M., et al. (2000). Heterologous expression of Trypanosoma cruzi trans-sialidase in Leishmania major enhances virulence. Infection and Immunity, 68, 2728–2734.

    Article  Google Scholar 

  25. Chang, K. P., & Fish, W. R. (1983). Leishmania. In J. B. Jansen (Ed.), In vitro cultivation of protozoan parasites (pp. 111–153). Boca Raton, Florida: CRC Press, Inc.

    Google Scholar 

  26. Ali, S. A., Iqbal, J., Ahmad, B., & Masoom, M. (1998). A semisynthetic fetal calf serum-free liquid medium for in vitro cultivation of Leishmania promastigotes. American Journal of Tropical Medicine and Hygiene, 59, 163–165.

    CAS  Google Scholar 

  27. Limoncu, M. E., Balcioglu, I. C., Yereli, K., Ozbel, Y., & Ozbilgin, A. (1997). A new experimental in vitro culture medium for cultivation of Leishmania species. Journal of Clinical Microbiology, 35, 2430–2431.

    CAS  Google Scholar 

  28. McCarthy-Burke, C., Bates, P. A., & Dwyer, D. M. (1991). Leishmania donovani: Use of two different, commercially available chemically defined media for continuous in vitro cultivation of promastigotes. Experimental Parasitology, 73, 385–387.

    Article  CAS  Google Scholar 

  29. Merlen, T., Sereno, D., Brajon, N., Rostand, F., & Lemesre, J. L. (1999). Leishmania spp.: Completely defined medium without serum and macromolecules (CDM/LP) fort he continuous in vitro cultivation of infective promastigote forms. American Journal of Tropical Medicine and Hygiene, 60, 41–50.

    CAS  Google Scholar 

  30. Meehan, H. A., Lundberg, R. A., & Connell, G. J. (2000). A trypanosomatid protein specifically interacts with a mammalian iron-responsive element. Parasitology Research, 86, 109–114.

    Article  CAS  Google Scholar 

  31. Pal, J., & Joshi-Purandare, M. (2001). Dose-dependent differential effect of hemin on protein synthesis and cell proliferation in Leishmania donovani promastigotes cultured in vitro. Journal of Biosciences, 26, 225–231.

    Article  CAS  Google Scholar 

  32. Srivastava, P., Sharma, G. D., Kamboj, K. K., Rastogi, A. K., & Pandey, V. C. (1997). Heme metabolism in promastigotes of Leishmania donovani. Molecular and Cellular Biochemistry, 171, 65–68.

    Article  CAS  Google Scholar 

  33. Melo, N. M., Peixoto de Azevedo, H., Roitman, I., & Mayrink, W. (1985). A new defined medium for cultivating Leishmania promastigotes. Acta Tropica, 42, 137–141.

    CAS  Google Scholar 

  34. Trager, W. (1957). Nutrition of hemoflagellate (Leishmania tarentolae) having a interchangeable requirement for cholin or pyridoxal. Journal of Protozoology, 4, 269–276.

    CAS  Google Scholar 

  35. Fritsche, C., Sitz, M., Weiland, N., Breitling, R., & Pohl, H. D. (2007). Characterization of the growth behavior of Leishmania tarentolae: A new expression system for recombinant proteins. Journal of Basic Microbiology, 47(5), 384–393.

    Article  CAS  Google Scholar 

  36. Fritsche, C., Sitz, M., Wolf, M., & Pohl, M. D. (2008). Development of a defined medium for heterologous expression in Leishmania tarentolae. Journal of Basic Microbiology, 48(6), 488–495.

    Article  CAS  Google Scholar 

  37. Edwards, A. M., Arrowsmith, C. H., Christendat, D., Dharamsi, J. D., Friesen, J. F., Greenblatt, J. F., et al. (2000). Protein production: Feeding the crystallographers and NMR spectroscopists. Nature Structural Biology, 7, 970–972.

    Article  CAS  Google Scholar 

  38. Rodriguez, E., & Krishna, N. R. (2001). An economical method for (15)N/(13)C isotopic labelling of protein expressed in Pichia pastoris. Journal of Biochemistry, 130, 19–22.

    CAS  Google Scholar 

  39. Pickford, A. R., & O’Leary, J. M. (2004). Isotopic labelling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods in Molecular Biology, 278, 17–34.

    CAS  Google Scholar 

  40. Strauss, A., Bitsch, F., Cutting, B., Fendrich, G., Graff, P., Liebetanz, J., et al. (2003). Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. Journal of Biomolecular NMR, 26(4), 367–372.

    Article  CAS  Google Scholar 

  41. Bruggert, M., Rehm, T., Shanker, S., Georgescu, J., & Holak, T. A. (2003). A novel medium for expression of proteins selectively labelled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cell. Journal of Biomolecular NMR, 25(4), 335–348.

    Article  Google Scholar 

  42. Niculae, A., Bayer, P., Cirstea, I., Bergbrede, T., Pietrucha, R., Gruen, M., et al. (2006). Isotopic labelling of recombinant proteins expressed in the protozoan host Leishmania tarentolae. Protein Expression and Purification, 48, 167–172.

    CAS  Google Scholar 

  43. Foldynovà-Trantirkovà, S., Matulovà, J., Dotsch, V., Lohr, F., Cirstea, I., Alexandov, K., et al. (2009). A cost-effective amino-acid-type selective isotope labelling of proteins expressed in Leishmania tarentolae. Journal of Biomolecular Structure and Dynamics, 26(6), 755–761.

    Google Scholar 

  44. Krassner, S. M., & Flory, B. (1971). Essential amino acids in the culture of Leishmania tarentolae. Journal of Parasitology, 57, 917–920.

    Article  CAS  Google Scholar 

  45. Orlando, T. C., Mayer, M. G., Campbell, D. A., Sturm, N. R., & Floeter-Winter, L. M. (2007). RNA polymerse I promoter and splice acceptor site recognition affect gene expression in non-pathogenic Leishmania species. Memorias Do Instituto Oswaldo Cruz, 102(7), 891–894.

    CAS  Google Scholar 

  46. Breton, M., Zhao, C., Ouellette, M., Tremblay, M. J., & Papadopoulou, B. (2007). A recombinant non-pathogenic Leishmania vaccine expression human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. Journal of General Virology, 88(Pt 1), 217–225.

    Article  CAS  Google Scholar 

  47. Phan, H. P., Sugino, M., & Niimi, T. (2009). The production of recombinant human laminin-332 in a Leishmania tarentolae expression system. Protein Expression and Purification, 68(1), 79–84.

    Article  CAS  Google Scholar 

  48. Lang, T., Goyard, S., Lebastard, M., & Milon, G. (2005). Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cellular Microbiology, 7(9), 383–392.

    Article  CAS  Google Scholar 

  49. Basak, A., Shervani, N. J., Mbikay, M., & Kolajova, M. (2008). Recombinant proprotein expression convertase 4 (PC4) from Leishmania tarentolae expression system: Purification, biochemical study and inhibitor design. Protein Expression and Purification, 60, 117–126.

    Article  CAS  Google Scholar 

  50. Lukes, J., Paris, Z., Regmi, S., Breitling, R., Mureev, S., Kushnir, S., et al. (2006). Translational initiation in Leishmania tarentolae and Phytomonas serpens (Kinetoplastida) is strongly influenced by pre-ATG triplet and its 5′ sequence context. Molecular and Biochemical Parasitology, 148, 125–132.

    Article  CAS  Google Scholar 

  51. Basile, G. Human retinoic acid receptor (RAR) gamma expression in L. tarentolae (Unpublished work).

  52. Soleimani, M., Mahboudi, F., Davoudi, N., Amanzadeh, A., Azizi, M., Adeli, A., et al. (2007). Expression of human tissue plasminogen activator in the trypanosomatid protozoan Leishmania tarentolae. Biotechnology and Applied Biochemistry, 48, 55–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Basile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basile, G., Peticca, M. Recombinant Protein Expression in Leishmania tarentolae . Mol Biotechnol 43, 273–278 (2009). https://doi.org/10.1007/s12033-009-9213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9213-5

Keywords

Navigation