Skip to main content
Log in

Serial Expression Analysis of Liver Regeneration-Related Genes in Rat Regenerating Liver

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We investigated the gene expression changes in rat hepatic restoration with Rat Genome 230 2.0 chip containing 11,789 known genes and 13,231 unknown genes (taking up 90 percent of rat whole genome) following a 2/3 hepatectomy. The expression profiles and roles of these genes in rat liver regeneration (LR) were assayed using bioinformatics and systems biology method. Among the above genes, 1,004 known genes and 857 unknown genes were found to be associated with rat LR. The numbers of the known genes up-regulated, down-regulated, and up/down-regulated were 622, 443, and 15, respectively; that of the unknown genes were 367, 400, and 14, respectively. Out of the above two groups of genes, the ones up- and down-regulated 20 times or more were 62 and 38, 8, and 14, respectively. Notably, The highest expression level of dehydrogenase/reductase member 7 (DHRS7) was more than 968-fold compared to control, and alpha-1-B glycoprotein (A1BG), the product of gene with the lowest expression abundance, was 58 times lower than control. During rat liver regeneration, 467 up–regulated, 282 down–regulated, 10 up/down-regulated genes, and 1,031 undetected genes in our study interacted with each other and formed a network with a total of 4,014 connectivities. Among them, the genes for the regulation, synthesis, transport, signal transduction, protein modification, and physiological response formed 630, 290, 691, 373, 2010, and 20 connectivities, respectively; and the genes jun, fos, myc, ptgs2, ccna2, ccl2 had relatively higher degree of connectivity. The results indicated that cell apoptosis and inflammatory response were enhanced in the initial phase and the early part of progressive phase in LR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, C. S., Chang, C. F., Yuan, J. Y., Han, H. P., Yang, K. J., Zhao, L. F., et al. (2004). Identification and characterization of 177 unreported genes associated with liver regeneration. Genomics Proteomics Bioinformatics, 2, 109–118.

    CAS  Google Scholar 

  2. Taub, R. (2004). Liver regeneration: From myth to mechanism. Nature Reviews Molecular Cell Biology, 5, 836–847.

    Article  CAS  Google Scholar 

  3. Higgins, G. M., & Anderson, R. M. (1931). Experimental pathology of the liver: Restoration of the liver of the white rat following partial surgical removal. Archives of Pathology, 12, 186–202.

    Google Scholar 

  4. Zhao, L. F., Zhang, W. M., & Xu, C. S. (2006). Expression patterns and action analysis of genes associated with blood coagulation responses during rat liver regeneration. World Journal of Gastroenterology, 12, 6842–6849.

    CAS  Google Scholar 

  5. Dransfeld, O., Gehrmann, T., Köhrer, K., Kircheis, G., Holneicher, C., Häussinger, D., et al. (2005). Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver International, 25, 1243–1258.

    Article  CAS  Google Scholar 

  6. Fausto, N., Campbell, J. S., & Riehle, K. J. (2006). Liver regeneration. Hepatology, 43, S45–S53.

    Article  CAS  Google Scholar 

  7. Fausto, N. (2000). Liver regeneration. Journal of Hepatology, 32, 19–31.

    Article  CAS  Google Scholar 

  8. Xu, C. S., Chang, C. F., Yuan, J. Y., Li, W. Q., Han, H. P., Yang, K. J., et al. (2005). Expressed genes in regenerating rat liver after partial hepatectomy. World Journal of Gastroenterology, 11, 2932–2940.

    CAS  Google Scholar 

  9. Fukuhara, Y., Hirasawa, A., Li, X. K., Kawasaki, M., Fujino, M., Funeshima, N., et al. (2003). Gene expression profile in the regenerating rat liver after partial hepatectomy. Journal of Hepatology, 38, 784–792.

    Article  CAS  Google Scholar 

  10. Knepp, J. H., Geahr, M. A., Forman, M. S., & Valsamakis, A. (2003). Comparison of automated and manual nucleic acid extraction methods for detection of enterovirus RNA. Journal of Clinical Microbiology, 41, 3532–3536.

    Article  CAS  Google Scholar 

  11. Nuyts, S., Van Mellaert, L., Lambin, P., & Anné, J. (2001). Efficient isolation of total RNA from clostridium without DNA contamination. Journal of Microbiological Methods, 44, 235–238.

    Article  CAS  Google Scholar 

  12. Arkin, A., Ross, J., & McAdams, H. H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149, 1633–1648.

    CAS  Google Scholar 

  13. Li, L., Roden, J., Shapiro, B. E., Bhatia, S., Forman, S. J., & Bhatia, R. (2005). Reproducibility, fidelity, and discriminant validity of mRNA amplification for microarray analysis from primary hematopoietic cells. Journal of Molecular Diagnostics, 7, 48–56.

    CAS  Google Scholar 

  14. Collins, J. F. (2006). Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biological Research, 39, 25–37.

    CAS  Google Scholar 

  15. Eisen, M. B., Spellman, P. T., Brown, P. O., Botstein., & D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceesings of the National Academy of Sciences, 95, 14863–14868.

  16. Werner, T. (2001). Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data. Pharmacogenomics, 2, 25–36.

    Article  CAS  Google Scholar 

  17. Tong, H. (1978). On a threshold model. Pattern recognition and signal processing. In C. H. Chen (Ed.), NATO ASI series E: Applied Sc No. 29. Alphen aan den Rijn, The Netherland: Sijthoff & Noordhoff.

  18. Cumano, A., & Godin, I. (2007). Ontogeny of the hematopoietic system. Annual Review of Immunology, 25, 745–785.

    Article  CAS  Google Scholar 

  19. Andersson, G., & Peterlin, B. M. (1990). NF-X2 that binds to the DRA X2-box is activator protein 1. Expression cloning of c-Jun. Journal of Immunology, 145, 3456–3462.

    CAS  Google Scholar 

  20. Sanders, J. A., & Gruppuso, P. A. (2006). Coordinated regulation of c-Myc and Max in rat liver development. American Journal of Physiology Gastrointestinal Liver Physiology, 290, G145–G155.

    Article  CAS  Google Scholar 

  21. Hollborn, M., Faude, F., Wiedemann, P., & Kohen, L. (2003). Elevated proto-oncogene and collagen mRNA expression in PVR retinas. Graefes Archive of Clinical and Experimental Ophthalmology, 241, 439–446.

    Article  CAS  Google Scholar 

  22. Vicencio, A. G., Eickelberg, O., Stankewich, M. C., Kashgarian, M., & Haddad, G. G. (2002). Regulation of TGF-beta ligand and receptor expression in neonatal rat lungs exposed to chronic hypoxia. Journal of Applied Physiology, 93, 1123–1130.

    CAS  Google Scholar 

  23. Frondoza, C. G., Sohrabi, A., Polotsky, A., Phan, P. V., Hungerford, D. S., & Lindmark, L. (2004). An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures. In Vitro Cell Dev Biol Animal, 40, 95–101.

    Article  CAS  Google Scholar 

  24. Berger, S., Chandra, R., Balló, H., Hildenbrand, R., & Stutte, H. J. (1997). Immune complexes are potent inhibitors of interleukin-12 secretion by human monocytes. European Journal of Immunology, 27, 2994–3000.

    Article  CAS  Google Scholar 

  25. Lacraz, S., Nicod, L. P., Chicheportiche, R., Welgus, H. G., & Dayer, J. M. (1995). IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. Journal of Clinical Investigation, 96, 2304–2310.

    Article  CAS  Google Scholar 

  26. Rivera, S., Ogier, C., Jourquin, J., Timsit, S., Szklarczyk, A. W., Miller, K., et al. (2002). Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. European Journal of Neuroscience, 15, 19–32.

    Article  Google Scholar 

  27. Vairapandi, M., Balliet, A. G., Hoffman, B., & Liebermann, D. A. (2002). GADD45b and GADD45 g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. Journal of Cellular Physiology, 192, 327–338.

    Article  CAS  Google Scholar 

  28. Vairapandi, M., Balliet, A. G., Fornace, A. J, Jr, Hoffman, B., & Liebermann, D. A. (1996). The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene, 12, 2579–2594.

    CAS  Google Scholar 

  29. Albrecht, J. H., & Hansen, L. K. (1999). Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes. Cell Growth and Difference, 10, 397–404.

    CAS  Google Scholar 

  30. Goldstone, S., Pavey, S., Forrest, A., Sinnamon, J., & Gabrielli, B. (2001). Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene, 20, 921–932.

    Article  CAS  Google Scholar 

  31. Ruth, J. H., Shahrara, S., Park, C. C., Morel, J. C., Kumar, P., Qin, S., et al. (2003). Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Laboratory Investigation, 83, 579–588.

    CAS  Google Scholar 

  32. Vigers, G. P., Anderson, L. J., Caffes, P., & Brandhuber, B. J. (1997). Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature, 386, 190–194.

    Article  CAS  Google Scholar 

  33. Lamb, R. F., Hennigan, R. F., Turnbull, K., Katsanakis, K. D., MacKenzie, E. D., Birnie, G. D., et al. (1997). AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Molecular and Cellular Biology, 17, 963–976.

    CAS  Google Scholar 

  34. Utans-Schneitz, U., Lorez, H., Klinkert, W. E., da Silva, J., & Lesslauer, W. (1998). A novel rat CC chemokine, identified by targeted differential display, is upregulated in brain inflammation. Journal of Neuroimmunology, 92, 179–190.

    Article  CAS  Google Scholar 

  35. Wang, Y., Suominen, J. S., Parvinen, M., Rivero-Muller, A., Kiiveri, S., Heikinheimo, M., et al. (2005). The regulated expression of c-IAP1 and c-IAP2 during the rat seminiferous epithelial cycle plays a role in the protection of germ cells from Fas-mediated apoptosis. Molecular and Cellular Endocrinology, 245, 111–120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bo Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WB., Fan, Jm., Zhang, Xl. et al. Serial Expression Analysis of Liver Regeneration-Related Genes in Rat Regenerating Liver. Mol Biotechnol 43, 221–231 (2009). https://doi.org/10.1007/s12033-009-9199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9199-z

Keywords

Navigation