Skip to main content
Log in

Evaluation of GFP Tag as a Screening Reporter in Directed Evolution of a Hyperthermophilic β-Glucosidase

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

By applying a directed evolution methodology specific enzymatic characteristics can be enhanced, but to select mutants of interest from a large mutant bank, this approach requires high throughput screening and facile selection. To facilitate such primary screening of enhanced clones, an expression system was tested that uses a green fluorescent protein (GFP) tag from Aequorea victoria linked to the enzyme of interest. As GFP’s fluorescence is readily measured, and as there is a 1:1 molar correlation between the target protein and GFP, the concept proposed was to determine whether GFP could facilitate primary screening of error-prone PCR (EPP) clones. For this purpose a thermostable β-glucosidase (BglA) from Fervidobacterium sp. was used as a model enzyme. A vector expressing the chimeric protein BglA-GFP-6XHis was constructed and the fusion protein purified and characterized. When compared to the native proteins, the components of the fusion displayed modified characteristics, such as enhanced GFP thermostability and a higher BglA optimum temperature. Clones carrying mutant BglA proteins obtained by EPP, were screened based on the BglA/GFP activity ratio. Purified tagged enzymes from selected clones resulted in modified substrate specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Beilen, J. B., & Li, Z. (2002). Enzyme technology: An overview. Current Opinion in Biotechnology, 13, 338–344. doi:10.1016/S0958-1669(02)00334-8.

    Article  Google Scholar 

  2. Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16, 577–583. doi:10.1016/j.copbio.2005.08.009.

    Article  CAS  Google Scholar 

  3. Lu, C., Bentley, W. E., & Rao, G. (2004). High-throughput approach to promoter study using green fluorescent protein. Biotechnology Progress, 20, 1634–1640. doi:10.1021/bp049751l.

    Article  CAS  Google Scholar 

  4. Hancock, S. M., Vaughan, M. D., & Withers, S. G. (2006). Engineering of glycosidases and glycosyltransferases. Current Opinion in Chemical Biology, 10, 509–519. doi:10.1016/j.cbpa.2006.07.015.

    Article  CAS  Google Scholar 

  5. Stemmer, W. P. C. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature, 370, 389–391. doi:10.1038/370389a0.

    Article  CAS  Google Scholar 

  6. Wang, J. H., Tsai, M. Y., Lee, G. C., & Shaw, J. F. (2007). Construction of a recombinant thermostable amylase-trehalose synthase bifunctional enzyme for facilitating the conversion of starch to trehalose. Journal of Agricultural and Food Chemistry, 55, 1256–1263. doi:10.1021/jf062355t.

    Article  CAS  Google Scholar 

  7. Bloom, J. D., Meyer, M. M., Meinhold, P., Otey, C. R., MacMillan, D., & Arnold, F. H. (2005). Evolving strategies for enzyme engineering. Current Opinion in Structural Biology, 15, 447–452. doi:10.1016/j.sbi.2005.06.004.

    Article  CAS  Google Scholar 

  8. Arnold, F. H., & Georgiou, G. (2003). Directed enzyme evolution—screening and selection methods. Methods in molecular biology, v230. Totowa, USA: Humana Press.

    Google Scholar 

  9. Cirino, P. C., Mayer, K. M., & Umeno, D. (2003). Generating mutant libraries using error-prone PCR. In F. H. Arnold & G. Georgiou (Eds.), Direct evolution library creation—methods and protocols. Methods in molecular biology, v230 (pp. 3–9). Totowa, USA: Humana Press.

    Chapter  Google Scholar 

  10. Yuan, L., Kurek, I., English, J., & Keenan, R. (2005). Laboratory-directed protein evolution. Microbiology and Molecular Biology Reviews, 69, 373–392. doi:10.1128/MMBR.69.3.373-392.2005.

    Article  CAS  Google Scholar 

  11. Yano, T., & Kagamiyama, H. (2001). Directed evolution of ampicillin-resistant activity from a functionally unrelated DNA fragment: A laboratory model of molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 903–907. doi:10.1073/pnas.031442298.

    Article  CAS  Google Scholar 

  12. Ai, H. W., Henderson, J. N., Remington, S. J., & Campbell, R. E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. The Biochemical Journal, 400, 531–540. doi:10.1042/BJ20060874.

    Article  CAS  Google Scholar 

  13. Minagawa, H., Yoshida, Y., Kenmochi, N., Furuichi, M., Shimada, J., & Kaneko, H. (2007). Improving the thermal stability of lactate oxidase by directed evolution. Cellular and Molecular Life Sciences, 64, 77–81. doi:10.1007/s00018-006-6409-8.

    Article  CAS  Google Scholar 

  14. McCarthy, J. K., Uzelac, A., Davis, D. F., & Eveleigh, D. E. (2004). Improved catalytic efficiency and active site modification of 1, 4-β-d-glucan glucohydrolase a from Thermotoga neapolitana by directed evolution. The Journal of Biological Chemistry, 279, 11495–11502. doi:10.1074/jbc.M305642200.

    Article  CAS  Google Scholar 

  15. May, O., Nguyen, P. T., & Arnold, F. H. (2000). Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine. Nature Biotechnology, 18, 317–320. doi:10.1038/73773.

    Article  CAS  Google Scholar 

  16. Cha, H. J., Wu, C. F., Valdes, J. J., Rao, G., & Bentley, W. E. (2000). Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: Monitoring protein expression and solubility. Biotechnology and Bioengineering, 67, 565–574. doi:10.1002/(SICI)1097-0290(20000305)67:5<565::AID-BIT7>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  17. Liu, S., Bugos, R. C., Dharmasiri, N., & Su, W. W. (2001). Green fluorescent protein as a secretory reporter and a tool for process optimization in transgenic plant cell cultures. Journal of Biotechnology, 87, 1–16. doi:10.1016/S0168-1656(00)00421-1.

    Article  CAS  Google Scholar 

  18. Shin, H. S., Lim, H. J., & Cha, H. J. (2003). Quantitative monitoring for secreted production of human interleukin-2 in stable insect Drosophila S2 cells using a green fluorescent protein fusion partner. Biotechnology Progress, 19, 152–157. doi:10.1021/bp0255614.

    Article  CAS  Google Scholar 

  19. Scholz, O., Thiel, A., Hillen, W., & Niederweis, M. (2000). Quantitative analysis of gene expression with an improved green fluorescent protein. European Journal of Biochemistry, 267, 1565–1570. doi:10.1046/j.1432-1327.2000.01170.x.

    Article  CAS  Google Scholar 

  20. Davis, D. F., Ward, W. W., & Cutler, M. W. (1994). Post-translational chromophore formation in recombinant GFP from E. coli requires oxygen. In A. K. Campbell, L. J. Kricka, & P. E. Stanley (Eds.), Bioluminescence and chemiluminiescence, fundamentals and applied aspects (pp. 596–599). Hoboken, USA: John Wiley & Sons.

    Google Scholar 

  21. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York, USA: Cold Spring Harbor Laboratory.

    Google Scholar 

  22. Waldo, G. S., Standish, B. M., Berendzen, J., & Terwilliger, T. C. (1999). Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology, 17, 691–695. doi:10.1038/10904.

    Article  CAS  Google Scholar 

  23. Heukeshoven, J., & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis, 6, 103–112. doi:10.1002/elps.1150060302.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  25. Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33–38. doi:10.1016/0378-1119(95)00685-0.

    Article  CAS  Google Scholar 

  26. Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., & Getzoff, E. D. (2003). Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proceedings of the National Academy of Sciences of the United States of America, 100, 12111–12116. doi:10.1073/pnas.2133463100.

    Article  CAS  Google Scholar 

  27. Brejc, K., Sixma, T. K., Kitts, P. A., Kain, S. R., Tsien, R. Y., Ormoe, M., et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 2306–2311. doi:10.1073/pnas.94.6.2306.

    Article  CAS  Google Scholar 

  28. Heim, R., Cubitt, A. B., & Tsien, R. Y. (1995). Improved green fluorescence. Nature, 373, 663–664. doi:10.1038/373663b0.

    Article  CAS  Google Scholar 

  29. Guzman, L. M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology, 177, 4121–4130.

    CAS  Google Scholar 

  30. Zhang, A., Cantor, E. J., Barshevsky, T., & Chong, S. (2005). Productive interaction of chaperones with substrate protein domains allows correct folding of the downstream GFP domain. Gene, 350, 25–31. doi:10.1016/j.gene.2005.01.019.

    Article  CAS  Google Scholar 

  31. Berrin, J. G., McLauchlan, W. R., Needs, P., Williamson, G., Puigserver, A., Kroon, P. A., et al. (2002). Functional expression of human liver cytosolic β-glucosidase in Pichia pastoris. Insights into its role in the metabolism of dietary glucosides. European Journal of Biochemistry, 269, 249–258. doi:10.1046/j.0014-2956.2001.02641.x.

    Article  CAS  Google Scholar 

  32. Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F., & Jorge, J. A. (2004). Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiology Letters, 240, 137–143. doi:10.1016/j.femsle.2004.09.021.

    Article  CAS  Google Scholar 

  33. Ali, M. H., & Imperiali, B. (2005). Protein oligomerization: How and why. Bioorganic and Medicinal Chemistry, 13, 5013–5020. doi:10.1016/j.bmc.2005.05.037.

    Article  CAS  Google Scholar 

  34. Davis, D. F., Sullivan, R. F., & Eveleigh, D. E. (2000). Thermostability and kinetic behavior of a β-glucosidase from Fervidobacterium sp. In: General meeting of the American Society For Microbiology, 100 (p. 81) Washington-DC, USA: American Society for Microbiology.

  35. Negro, A., Grassato, L., Polverino, D. L., & Skaper, S. D. (1997). Genetic construction, properties and application of a green fluorescent protein-tagged ciliary neurotrophic factor. Protein Engineering, 10, 1077–1083. doi:10.1093/protein/10.9.1077.

    Article  CAS  Google Scholar 

  36. Jana, S., & Deb, J. K. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology, 67, 289–298. doi:10.1007/s00253-004-1814-0.

    Article  CAS  Google Scholar 

  37. Fuhrmann, M., Hausherr, A., Ferbitz, L., Schödl, T., Heitzer, M., & Hegemann, P. (2004). Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Molecular Biology, 6, 869–881.

    Google Scholar 

  38. Beadle, B. M., Baase, W. A., Wilson, D. B., Gilkes, N. R., & Shoichet, B. K. (1999). Comparing the thermodynamic stability of related thermophilic and mesophilic enzyme. Biochemistry, 38, 2570–2576. doi:10.1021/bi9824902.

    Article  CAS  Google Scholar 

  39. Chang, H. C., Kaiser, C. M., Hartl, F. U., & Barral, J. M. (2005). De novo folding of GFP fusion proteins: High efficiency in eukaryotes but not in bacteria. Journal of Molecular Biology, 353, 397–409. doi:10.1016/j.jmb.2005.08.052.

    Article  CAS  Google Scholar 

  40. Zhao, H., Giver, L., Shao, Z., Affholter, J. A., & Arnold, F. H. (1998). Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature Biotechnology, 16, 259–261. doi:10.1038/nbt0398-258.

    Article  Google Scholar 

  41. Zhao, H., Chockalingam, K., & Chen, Z. (2002). Directed evolution of enzymes and pathways for industrial biocatalysis. Current Opinion in Biotechnology, 13, 104–110. doi:10.1016/S0958-1669(02)00291-4.

    Article  CAS  Google Scholar 

  42. Parikh, M. R., & Matsumura, I. (2005). Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase. Journal of Molecular Biology, 352, 621–628. doi:10.1016/j.jmb.2005.07.020.

    Article  CAS  Google Scholar 

  43. Rowe, L. A., Geddie, M. L., Alexander, O. B., & Matsumura, I. (2003). A comparison of directed evolution approaches using the β-glucuronidase model system. Journal of Molecular Biology, 332, 851–860. doi:10.1016/S0022-2836(03)00972-0.

    Article  CAS  Google Scholar 

  44. Feng, H. Y., Drone, J., Hoffmann, L., Tran, V., Tellier, C., Rabille, C., et al. (2005). Converting a β-glycosidase into a β-transglycosidase by directed evolution. The Journal of Biological Chemistry, 280, 37088–37097. doi:10.1074/jbc.M502873200.

    Article  CAS  Google Scholar 

  45. Jiang, X., Coffino, P., & Li, X. (2004). Development of a method for screening short-lived proteins using green fluorescent protein. Genome Biology, 5, R81. doi:10.1186/gb-2004-5-10-r81.

    Article  Google Scholar 

  46. Wang, H., & Chong, S. (2003). Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex. Proceedings of the National Academy of Sciences of the United States of America, 100, 478–483. doi:10.1073/pnas.0236088100.

    Article  CAS  Google Scholar 

  47. Hakulinen, N., Paavilainen, S., Korpela, T., & Rouvinen, J. (2000). The crystal structure of b-glucosidase from Bacillus circulans sp. alkalophilus: ability to form long polymeric assemblies. Journal of Structural Biology, 129, 69–79. doi:10.1006/jsbi.1999.4206.

    Article  CAS  Google Scholar 

  48. Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79–88. doi:10.1038/nbt1172.

    Article  Google Scholar 

Download references

Acknowledgments

AOSL was supported through The Brazilian National Council for Scientific Research and Technological Development (CNPq) and The Brazilian Foundation and Coordination for Graduate Student Improvement (CAPES). This study was supported by a USDA National Research Initiative Competitive Grants Program grant 97-35503-4557, NJ Marine Science Consortium Grant B/T-12, a McIntire-Stennis grant 0181520 and the NJ Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André O. S. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A.O.S., Davis, D.F., Swiatek, G. et al. Evaluation of GFP Tag as a Screening Reporter in Directed Evolution of a Hyperthermophilic β-Glucosidase. Mol Biotechnol 42, 205–215 (2009). https://doi.org/10.1007/s12033-009-9152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9152-1

Keywords

Navigation