Skip to main content
Log in

Making the Most of Fusion Tags Technology in Structural Characterization of Membrane Proteins

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Membrane proteins can be investigated at various structural levels, including the topological structure, the high-resolution three-dimensional structure, and the organization and assembly of membrane protein complexes. Gene fusion technology makes it possible to insert a polynucleotide encoding a protein or polypeptide tag into the gene encoding a membrane protein of interest. Resultant recombinant proteins may possess the functions of the original membrane proteins, together with the biochemical properties of the imported fusion tag, greatly enhancing functional and structural studies of membrane proteins. In this article, the latest literature is reviewed in relation to types, applications, strategies, and approaches to fusion tag technology for structural investigations of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wallin, E., & von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science, 7, 1029–1038.

    Article  CAS  Google Scholar 

  2. Ahram, M., Litou, Z. I., Fang, R., et al. (2006). Estimation of membrane proteins in the human proteome. In Silico Biology, 6, 379–386.

    CAS  Google Scholar 

  3. Waugh, D. S. (2005). Making the most of affinity tags. Trends in Biotechnology, 23(6), 316–320. doi:10.1016/j.tibtech.2005.03.012.

    Article  CAS  Google Scholar 

  4. Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60(5), 523–533.

    CAS  Google Scholar 

  5. Doi, N., & Yanagawa, H. (1999). Insertional gene fusion technology. FEBS Letters, 457(1), 1–4. doi:10.1016/S0014-5793(99)00991-6.

    Article  CAS  Google Scholar 

  6. Gandlur, S. M., Wei, L., Levine, J., et al. (2004). Membrane topology of the DrrB protein of the doxorubicin transporter of Streptomyces peucetius. The Journal of Biological Chemistry, 279(26), 27799–27806. doi:10.1074/jbc.M402898200.

    Article  CAS  Google Scholar 

  7. Drew, D., Sjostrand, D., Nilsson, J., et al. (2002). Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA-GFP fusion analysis. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2690–2695. doi:10.1073/pnas.052018199.

    Article  CAS  Google Scholar 

  8. Cosgriff, A. J., & Pittard, A. J. (1997). A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. Journal of Bacteriology, 179, 3317–3323.

    CAS  Google Scholar 

  9. Nanatani, K., Ohonishi, F., Yoneyama, H., et al. (2005). Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus. Biochemical and Biophysical Research Communications, 328, 20–26. doi:10.1016/j.bbrc.2004.12.133.

    Article  CAS  Google Scholar 

  10. Singh, A. K., Haldar, R., Mandal, D., et al. (2006). Analysis of the topology of Vibrio cholerae NorM and identification of amino acid residues involved in norfloxacin resistance. Antimicrobial Agents and Chemotherapy, 50(11), 3717–3723. doi:10.1128/AAC.00460-06.

    Article  CAS  Google Scholar 

  11. Lorenz, H., Hailey, D. W., & Lippincott-Schwartz, J. (2006). Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nature Methods, 3, 205–210. doi:10.1038/nmeth857.

    Article  CAS  Google Scholar 

  12. Lorenz, H., Hailey, D. W., Wunder, C., et al. (2006). The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nature Prot, 1, 276–279. doi:10.1038/nprot.2006.42.

    Article  CAS  Google Scholar 

  13. Lorenz, H., Hailey, D. W., & Lippincott-Schwartz, J. (2008). Addressing membrane protein topology using the fluorescence protease protection (FPP) assay. Methods in Molecular Biology (Clifton, N.J.), 440, 227–233. doi:10.1007/978-1-59745-178-9_17.

    Article  CAS  Google Scholar 

  14. Hofmann, T., Schaefer, M., Schultz, G., et al. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7461–7466. doi:10.1073/pnas.102596199.

    Article  CAS  Google Scholar 

  15. Kawaguchi, R., Yu, J., Wiita, P., et al. (2008). Mapping the membrane topology and extracellular ligand binding domains of the retinol binding protein receptor. Biochemistry, 47(19), 5387–5395. doi:10.1021/bi8002082.

    Article  CAS  Google Scholar 

  16. Paterson, R. G., Takeda, M., Ohigashi, Y., et al. (2003). Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology, 306(1), 7–17. doi:10.1016/S0042-6822(02)00083-1.

    Article  CAS  Google Scholar 

  17. Roosild, T. P., Castronovo, S., & Choe, S. (2006). Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins. Acta Crystallographica, F62, 835–839.

    CAS  Google Scholar 

  18. Barrera, N. P., Shaifta, Y., McFadzean, I., et al. (2007). AFM imaging reveals the tetrameric structure of the TRPC1 channel. Biochemical and Biophysical Research Communications, 358, 1086–1090. doi:10.1016/j.bbrc.2007.05.039.

    Article  CAS  Google Scholar 

  19. Wittlich, M., Wiesehan, K., Koenig, B. W., et al. (2007). Expression, purification and membrane reconstitution of a CD4 fragment comprising the transmembrane and cytoplasmic domains of the receptor. Protein Expression and Purification, 55, 198–207. doi:10.1016/j.pep.2007.05.007.

    Article  CAS  Google Scholar 

  20. Mobley, C. K., Myers, J. K., Hadziselimovic, A., et al. (2007). Purification and initiation of structural characterization of human peripheral myelin protein 22, an integral membrane protein linked to peripheral neuropathies. Biochemistry, 46, 11185–11195. doi:10.1021/bi700855j.

    Article  CAS  Google Scholar 

  21. Stalz, W. D., Greie, J.-C., Deckers-Hebestreit, G., et al. (2003). Direct interaction of subunits a and b of the F0 complex of Escherichia coli ATP synthase by forming an ab2 subcomplex. The Journal of Biological Chemistry, 278(29), 27068–27071. doi:10.1074/jbc.M302027200.

    Article  CAS  Google Scholar 

  22. Büchel, C., Morris, E., Orlova, E., et al. (2001). Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis. Journal of Molecular Biology, 312(2), 371–379. doi:10.1006/jmbi.2001.4951.

    Article  CAS  Google Scholar 

  23. Korepanova, A., Moore, J. D., Nguyen, H. B., et al. (2007). Expression of membrane proteins from Mycobacterium tuberculosis in Escherichia coli as fusions with maltose binding protein. Protein Expression and Purification, 53(1), 24–30. doi:10.1016/j.pep.2006.11.022.

    Article  CAS  Google Scholar 

  24. Huber, W. J., & Backes, W. L. (2007). Expression and characterization of full-length human heme oxygenase-1: The presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase. Biochemistry, 46, 12212–12219. doi:10.1021/bi701496z.

    Article  CAS  Google Scholar 

  25. Schmidt, T. G. M., & Skerra, A. (2007). The strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protocols, 2(6), 1528–1535. doi:10.1038/nprot.2007.209.

    Article  CAS  Google Scholar 

  26. Zhuang, J. P., Prive, G. G., Werner, G. E., et al. (1999). Two-dimensional crystallization of Escherichia coli lactose permease. Journal of Structural Biology, 125, 63–75. doi:10.1006/jsbi.1998.4059.

    Article  CAS  Google Scholar 

  27. Byrne, B., Abramson, J., Jannson, M., et al. (2000). Fusion protein approach to improve the crystal quality of cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochimica et Biophysica Acta, 1459, 449–455. doi:10.1016/S0005-2728(00)00183-3.

    Article  CAS  Google Scholar 

  28. Ishihara, G., Goto, M., Saeki, M., et al. (2005). Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expression and Purification, 41(1), 27–37. doi:10.1016/j.pep.2005.01.013.

    Article  CAS  Google Scholar 

  29. Thai, K., Choi, J., Franzin, C. M., et al. (2005). Bcl-XL as a fusion protein for the high-level expression of membrane-associated proteins. Protein Science, 14, 1–8. doi:10.1110/ps.041244305.

    Article  CAS  Google Scholar 

  30. Therien, A. G., Glibowicka, M., & Deber, C. M. (2002). Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator. Protein Expression and Purification, 25(1), 81–86. doi:10.1006/prep.2001.1612.

    Article  CAS  Google Scholar 

  31. McCann, C. M., Bareyre, F. M., Lichtman, J. W., et al. (2005). Peptide tags for labeling membrane proteins in live cells with multiple fluorophores. BioTechniques, 38(6), 945–952. doi:10.2144/05386IT02.

    Article  CAS  Google Scholar 

  32. Hoffmann, C., Gaietta, G., Bünemann, M., et al. (2005). A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nature Methods, 2(3), 171–176. doi:10.1038/nmeth742.

    Article  CAS  Google Scholar 

  33. Geest, M. V., & Lolkema, J. S. (2000). Membrane topology and insertion of membrane proteins: Search for topogenic signals. Microbiology and Molecular Biology Reviews, 64(1), 13–33. doi:10.1128/MMBR.64.1.13-33.2000.

    Article  Google Scholar 

  34. Nielsen, N., Malmendal, A., & Vosegaard, T. (2004). Techniques and applications of NMR to membrane proteins. Molecular Membrane Biology, 21(3), 129–141. doi:10.1080/09687680410001693679.

    Article  CAS  Google Scholar 

  35. Caffrey, M. (2003). Membrane protein crystallization. Journal of Structural Biology, 142, 108–132. doi:10.1016/S1047-8477(03)00043-1.

    Article  CAS  Google Scholar 

  36. Tate, C. G., & Rubinstein, J. L. (2008). Membrane protein structure determination by electron cryo-microscopy. In E. Pebay-Peyroula (Ed.), Biophysical analysis of membrane proteins: Investigating structure and function. Weinheim: Wiley-VCH.

    Google Scholar 

  37. Goncalves, R. P., & Scheuring, S. (2006). Manipulating and imaging individual membrane proteins by AFM. Surface and Interface Analysis, 38, 1413–1418. doi:10.1002/sia.2350.

    Article  CAS  Google Scholar 

  38. von Heijne, G. (2006). Membrane-protein topology. Nature Reviews. Molecular Cell Biology, 7, 909–918. doi:10.1038/nrm2063.

    Article  CAS  Google Scholar 

  39. http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=toppred.

  40. Bungert, S., Krafft, B., Schlesinger, R., et al. (1999). One-step purification of the NADH dehydrogenase fragment of the Echerichia coli complex I by means of Strep-tag affinity chromatography. FEBS Letters, 460, 207–211. doi:10.1016/S0014-5793(99)01341-1.

    Article  CAS  Google Scholar 

  41. Kavoosi, K., Creagh, A. L., & Kilburn, D. G. (2007). Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli. Biotechnology and Bioengineering, 98, 599–610. doi:10.1002/bit.21396.

    Article  CAS  Google Scholar 

  42. Jarvik, J. W., & Telmer, C. A. (1998). Epitope tagging. Annual Review of Genetics, 32, 601–618. doi:10.1146/annurev.genet.32.1.601.

    Article  CAS  Google Scholar 

  43. Brizzard, B. (2008). Epitope tagging. BioTechniques, 44(5), S693–S695. doi:10.2144/000112841.

    Article  CAS  Google Scholar 

  44. Hernan, R., Heuermann, K., & Brizzard, B. (2000). Multiple epitope tagging of expressed proteins for enhanced detection. BioTechniques, 28, 789–793.

    CAS  Google Scholar 

  45. Zhang, L., Hernan, R., & Brizzard, B. (2001). Multiple tandem epitope tagging for enhanced detection of protein expressed in mammalian cells. Molecular Biotechnology, 19(3), 313–321. doi:10.1385/MB:19:3:313.

    Article  CAS  Google Scholar 

  46. Sharrock, R. A., & Clack, T. (2004). Heterodimerization of type II phytochromes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 11500–11505. doi:10.1073/pnas.0404286101.

    Article  CAS  Google Scholar 

  47. Graumann, J., Dunipace, L. A., Seol, J. H., et al. (2004). Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Molecular and Cellular Proteomics, 3, 226–237. doi:10.1074/mcp.M300099-MCP200.

    Article  CAS  Google Scholar 

  48. Ross-Macdonald, P., Sheehan, A., Roeder, G. S., et al. (1997). A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 94, 190–195. doi:10.1073/pnas.94.1.190.

    Article  CAS  Google Scholar 

  49. Veraksa, A., Bauer, A., & Artavanis-Tsakonas, S. (2005). Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Developmental Dynamics, 232, 827–834. doi:10.1002/dvdy.20272.

    Article  CAS  Google Scholar 

  50. Li, Q., Dai, X.-Q., Shen, P. Y., et al. (2004). A modified mammalian tandem affinity purification procedure to prepare functional polycystin-2 channel. FEBS Letters, 576, 231–236. doi:10.1016/j.febslet.2004.09.017.

    Article  CAS  Google Scholar 

  51. DiCiommo, D. P., Duckett, A., Burcescu, I., et al. (2004). Retinoblastoma protein purification and transduction of retina and retinoblastoma cells using improved alphavirus vectors. Investigative Ophthalmology and Visual Science, 45, 3320–3329. doi:10.1167/iovs.04-0140.

    Article  Google Scholar 

  52. Gloeckner, C. J., Boldt, K., Schumacher, A., et al. (2007). A novel tandem affinity purification strategy for the efficient isolation of native protein complexes. Proteomics, 7, 4228–4234. doi:10.1002/pmic.200700038.

    Article  CAS  Google Scholar 

  53. Akiyama, Y., & Ito, K. (1993). Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. The Journal of Biological Chemistry, 268, 8146–8150.

    CAS  Google Scholar 

  54. Silhavy, T. J., Shuman, H. A., Beckwith, J., et al. (1977). Use of gene fusions to study outer membrane protein localization in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 74, 5411–5415. doi:10.1073/pnas.74.12.5411.

    Article  CAS  Google Scholar 

  55. Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544. doi:10.1146/annurev.biochem.67.1.509.

    Article  CAS  Google Scholar 

  56. Truong, K., & Ikura, M. (2001). The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Current Opinion in Structural Biology, 11, 573–578. doi:10.1016/S0959-440X(00)00249-9.

    Article  CAS  Google Scholar 

  57. Munro, S., & Pelham, H. R. B. (1984). Use of peptide tagging to detect proteins expressed from cloned genes: Deletion mapping functional domains of Drosophila hsp70. The EMBO Journal, 3(13), 3087–3093.

    CAS  Google Scholar 

  58. Park, S. H., Cheong, C., Idoyaga, J., et al. (2008). Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. Journal of Immunological Methods, 331(1–2), 27–38. doi:10.1016/j.jim.2007.10.012.

    Article  CAS  Google Scholar 

  59. Hunte, C., & Michel, H. (2002). Crystallisation of membrane proteins mediated by antibody fragments. Current Opinion in Structural Biology, 12, 503–508. doi:10.1016/S0959-440X(02)00354-8.

    Article  CAS  Google Scholar 

  60. Abramson, J., Smirnova, I., Kasho, V., et al. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science, 301, 610–615. doi:10.1126/science.1088196.

    Article  CAS  Google Scholar 

  61. Huang, Y., Lemieux, M. J., Song, J. M., et al. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science, 301, 616–620. doi:10.1126/science.1087619.

    Article  CAS  Google Scholar 

  62. Kapust, R. B., & Waugh, D. S. (1999). Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science, 8, 1668–1674.

    Article  CAS  Google Scholar 

  63. Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 10, 411–421. doi:10.1016/S0958-1669(99)00003-8.

    Article  CAS  Google Scholar 

  64. Sachdev, D., & Chirgwin, J. M. (1998). Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expression and Purification, 12, 122–132. doi:10.1006/prep.1997.0826.

    Article  CAS  Google Scholar 

  65. Douette, P., Navet, R., Gerkens, P., et al. (2005). Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL. Biochemical and Biophysical Research Communications, 333(3), 686–693. doi:10.1016/j.bbrc.2005.05.164.

    Article  CAS  Google Scholar 

  66. Zuo, X., Li, S., Hall, J., et al. (2005). Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. Journal of Structural and Functional Genomics, 6, 103–111. doi:10.1007/s10969-005-2664-4.

    Article  CAS  Google Scholar 

  67. Arnau, J., Lauritzen, C., Petersen, G. E., et al. (2006). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification, 48, 1–13. doi:10.1016/j.pep.2005.12.002.

    Article  CAS  Google Scholar 

  68. Fairlie, W. D., Uboldi, A. D., De Souza, D. P., et al. (2002). A fusion protein system for the recombinant production of short disulfide-containing peptides. Protein Expression and Purification, 26, 171–178. doi:10.1016/S1046-5928(02)00521-1.

    Article  CAS  Google Scholar 

  69. Rais-Beghdadi, C., Roggero, M. A., Fasel, N., et al. (1998). Purification of recombinant proteins by chemical removal of the affinity tag. Applied Biochemistry and Biotechnology, 74, 95–103. doi:10.1007/BF02787176.

    Article  CAS  Google Scholar 

  70. Mannelli, L. D. C., Pacini, A., Toscano, A., et al. (2006). Gi/o proteins: Expression for direct activation enquiry. Protein Expression and Purification, 47(1), 303–310. doi:10.1016/j.pep.2005.11.005.

    Article  CAS  Google Scholar 

  71. Yeliseev, A., Zoubak, L., & Gawrisch, K. (2007). Use of dual affinity tags for expression and purification of functional peripheral cannabinoid receptor. Protein Expression and Purification, 53(1), 153–163. doi:10.1016/j.pep.2006.12.003.

    Article  CAS  Google Scholar 

  72. Abdullah, N., & Chase, H. A. (2005). Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption. Biotechnology and Bioengineering, 92, 501–513. doi:10.1002/bit.20633.

    Article  CAS  Google Scholar 

  73. Pedersen, J., Lauritzen, C., Madsen, M. T., et al. (1999). Removal of N terminal polyhistidine tags from recombinant proteins using engineered aminopeptidases. Protein Expression and Purification, 15, 389–400. doi:10.1006/prep.1999.1038.

    Article  CAS  Google Scholar 

  74. Kenig, M., Peternel, S., Gaberc-Porekar, V., et al. (2006). Influence of the protein oligomericity on final yield after affinity tag removal in purification of recombinant proteins. Journal of Chromatography. A, 1101(1–2), 293–306. doi:10.1016/j.chroma.2005.09.089.

    Article  CAS  Google Scholar 

  75. Block, H., Kubicek, J., Labahn, J., et al. (2008). Production and comprehensive quality control of recombinant human Interleukin-1β: A case study for a process development strategy. Protein Expression and Purification, 57(2), 244–254. doi:10.1016/j.pep.2007.09.019.

    Article  CAS  Google Scholar 

  76. Mee, C., Banki, M. R., & Wood, D. W. (2008). Towards the elimination of chromatography in protein purification: Expressing proteins engineered to purify themselves. Chemical Engineering Journal, 135, 56–62. doi:10.1016/j.cej.2007.04.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 30600004 and 20634030), the Ministry of Science and Technology of China (2008CB617510), and Scientific Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Guo, XM. & Chen, H. Making the Most of Fusion Tags Technology in Structural Characterization of Membrane Proteins. Mol Biotechnol 42, 135–145 (2009). https://doi.org/10.1007/s12033-009-9148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9148-x

Keywords

Navigation