Skip to main content
Log in

Gene Cloning, Expression, and Characterization of the Geobacillus Thermoleovorans CCR11 Thermoalkaliphilic Lipase

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The gene for a Geobacillus thermoleovorans CCR11 thermostable lipase was recovered by PCR and cloned. Four genetic constructions were designed and successfully expressed in E. coli: (i) the lipase structural gene (lipCCR11) in the PinPoint Xa vector; (ii) the lipase structural gene (lipACCR11) in the pET-28a(+) vector; (iii) the lipase structural gene minus the signal peptide (lipMatCCR11) in the pET-3b vector; and (iv) the lipase structural gene plus its own promoter (lipProCCR11) in the pGEM-T cloning vector. The lipase gene sequence analysis showed an open reading frame of 1,212 nucleotides coding for a mature lipase of 382 residues (40 kDa) plus a 22 residues signal peptide. Expression under T7 and T7lac promoter resulted in a 40- and 36-fold increase in lipolytic activity with respect to the original strain lipase. All recombinant lipases showed an optimal activity at pH 9.0, but variations were found in the temperature for maximum activity and the substrate specificity among them and when compared with the parental strain lipase, especially in the recombinant lipases that contained fusion tags. Therefore, it is important to find the appropriate expression system able to attain a high concentration of the recombinant lipase without compromising the proper folding of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jaeger, K.-E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397. doi:10.1016/S0958-1669(02)00341-5.

    Article  CAS  Google Scholar 

  2. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781. doi:10.1007/s00253-004-1568-8.

    Article  CAS  Google Scholar 

  3. Jaeger, K.-E., Ransac, S., Dijkstra, B., Colson, C., Heuvel, M., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15, 29–63. doi:10.1111/j.1574-6976.1994.tb00121.x.

    Article  CAS  Google Scholar 

  4. Sharman, R., Yusuf, C., & Banerjee, U.-C. (2001). Production, purification, characterization, and application of lipases. Biotechnology Advances, 19, 627–662. doi:10.1016/S0734-9750(01)00086-6.

    Article  Google Scholar 

  5. Gupta, R., Rathi, P., Gupta, N., & Bradoo, S. (2003). Lipase assay for conventional and molecular screening: an overview. Biotechnology and Applied Biochemistry, 37, 63–71. doi:10.1042/BA20020059.

    Article  CAS  Google Scholar 

  6. Van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6, 213–218. doi:10.1016/S1369-5274(03)00060-2.

    Article  Google Scholar 

  7. Kitaura, S., Suzuki, K., & Imamura, S. (2001). Monoacylglycerol lipase from moderately thermophilic Bacillus sp. strain H-257: molecular cloning, sequencing and expression in Escherichia coli of the gene. Journal of Biochemistry, 129, 397–402.

    CAS  Google Scholar 

  8. Ruiz, C., Pastor, J., & Diaz, P. (2003). Isolation and characterization of Bacillus sp. BP-6 LipA, a ubiquitous lipase among mesophilic Bacillus species. Letters in Applied Microbiology, 37, 354–359. doi:10.1046/j.1472-765X.2003.01413.x.

    Article  CAS  Google Scholar 

  9. Abdel-Fattah, Y., & Gaballa, A. (2008). Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli. Microbiological Research, 163, 13–20. doi:10.1016/j.micres.2006.02.004.

    Article  CAS  Google Scholar 

  10. Drouault, S., Corthier, G., Ehrlich, S., & Renault, P. (2000). Expression of Staphylococcus hyicus lipase in Lactococcus lactis. Applied and Environmental Microbiology, 66, 588–598. doi:10.1128/AEM.66.2.588-598.2000.

    Article  CAS  Google Scholar 

  11. Bell, P., Sunna, A., Gibbs, M., Curach, N., Nevalaine, H., & Bergquist, L. (2002). Prospecting for novel lipase genes using PCR. Microbiology, 148, 2283–2291.

    CAS  Google Scholar 

  12. Quyen, D., Schmidt-Dannert, C., & Schmid, R. (2003). High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression and Purification, 28, 102–110. doi:10.1016/S1046-5928(02)00679-4.

    Article  CAS  Google Scholar 

  13. Kim, M.-H., Kim, H.-K., Lee, J.-K., Park, S.-Y., & Oh, T.-K. (2000). Thermostable lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Bioscience, Biotechnology, and Biochemistry, 64, 280–286. doi:10.1271/bbb.64.280.

    Article  CAS  Google Scholar 

  14. Bell, P., Nevalainen, H., Morgan, H. W., & Bergquist, P. L. (1999). Rapid cloning of thermoalkalophilic lipases from Bacillus spp. using PCR. Biotechnology Letters, 21, 1003–1006. doi:10.1023/A:1005654701905.

    Article  CAS  Google Scholar 

  15. Sinchaikul, S., Sookkheo, B., Phutrakul, S., Pan, F.-M., & Chen, S.-T. (2001). Optimization of a thermostable lipase from Bacillus stearothermophilus P1: overexpression, purification, and characterization. Protein Expression and Purification, 22, 388–398. doi:10.1006/prep.2001.1456.

    Article  CAS  Google Scholar 

  16. Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Oliart, R. R. (2005). Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 37, 648–654. doi:10.1016/j.enzmictec.2005.06.003.

    Article  CAS  Google Scholar 

  17. Ausubel, F., Brent, R. R., Kingstone, M. D., Seidman, S. J., & Struhl, K. (Eds.). (1997). Short protocols in molecular biology. A compendium of methods from current protocols in molecular biology, vol 1 Preparation and analysis of DNA and Enzymatic manipulation of DNA (pp. 2-1–3-50). New York: Wiley.

  18. Kouker, G., & Jaeger, K. (1987). Specific and sensitive plate assay for bacterial lipases. Applied and Environmental Microbiology, 53, 211–213.

    CAS  Google Scholar 

  19. Nawani, N., Dosanjh, N., & Kaur, J. (1998). A novel thermostable lipase from a thermophilic Bacillus sp.: characterization and esterification studies. Biotechnology Letters, 20, 997–1000. doi:10.1023/A:1005430215849.

    Article  CAS  Google Scholar 

  20. Burnette, W. (1981). “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112, 195–203. doi:10.1016/0003-2697(81)90281-5.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin-phenol reagents. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Prim, N., Sánchez, M., Ruiz, C., Pastor, J., & Diaz, P. (2003). Use of methylumbeliferyl-derivative substrate for lipase activity characterization. Journal of Molecular Catalysis B, Enzymatic, 22, 339–346. doi:10.1016/S1381-1177(03)00048-1.

    Article  CAS  Google Scholar 

  23. Schmidt-Dannert, C., Rúa, L., Atomi, H., & Schnmid, R. (1996). Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochimica et Biophysica Acta, 1301, 105–114.

    Google Scholar 

  24. Leow, T., Rahman, R., Basri, M., & Salleh, A. (2004). High level expression of thermostable lipase from Geobacillus sp strain T1. Bioscience, Biotechnology, and Biochemistry, 68, 96–103. doi:10.1271/bbb.68.96.

    Article  CAS  Google Scholar 

  25. Adamczak, A., & Porollo, J. M. (2005). Combining prediction of secondary structure and solvent accessibility in proteins. Proteins: Structure, Function, and Bioinformatics, 59, 467–475. doi:10.1002/prot.20441.

    Article  Google Scholar 

  26. Rahman, R., Chin, J., & Salleh, A. (2003). Cloning and expression of a novel lipase gene from Bacillus sphaericus 205y. Molecular Genetics and Genomics, 269, 252–260.

    CAS  Google Scholar 

  27. Arpigny, J., & Jaeger, K.-L. (1999). Bacterial lipolytic enzymes: Classification and properties. The Biochemical Journal, 343, 177–183. doi:10.1042/0264-6021:3430177.

    Article  CAS  Google Scholar 

  28. Tyndall, J., Sinchaikul, S., Fothergill-Gilmore, T., & Walkinshaw, M. (2002). Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. Journal of Molecular Biology, 323, 859–869. doi:10.1016/S0022-2836(02)01004-5.

    Article  CAS  Google Scholar 

  29. Jaeger, K.-E., Dijkstra, B., & Reetz, M. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology, 53, 315–351. doi:10.1146/annurev.micro.53.1.315.

    Article  CAS  Google Scholar 

  30. Vieille, C., & Zeikus, G. (2001). Hyperthermopilic enzymes: source, uses, and molecular mechanism for thermostability. Microbiology and Molecular Biology Reviews, 65, 1–43. doi:10.1128/MMBR.65.1.1-43.2001.

    Article  CAS  Google Scholar 

  31. Acharya, P., Rajakumara, E., Sankaranarayanana, R., & Rao, N. (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Journal of Molecular Biology, 341, 1271–1281. doi:10.1016/j.jmb.2004.06.059.

    Article  CAS  Google Scholar 

  32. Cygler, M., Scrang, J., & Ergan, F. (1992). Advances in structural understanding of lipases. Biotechnology & Genetic Engineering Reviews, 10, 143–184.

    CAS  Google Scholar 

  33. Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269, 631–643. doi:10.1006/jmbi.1997.1042.

    Article  CAS  Google Scholar 

  34. Overbeeke, P., Govardhan, C., Khalaf, N., Jongejan, J., & Heijnen, J. (2000). Influence of lid conformation on lipase enantioselectivity. Journal of Molecular Catalysis B, Enzymatic, 10, 385–393. doi:10.1016/S1381-1177(99)00110-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rodolfo Quintana-Castro (PhD) acknowledges his scholarship from the National Council on Technological Education (Cosnet) and the National Direction of Technological Education (DGEST-SEP). This work was supported by Grant 362.06-P from the National Direction of Technological Education (DGEST-SEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosamaría Oliart-Ros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintana-Castro, R., Díaz, P., Valerio-Alfaro, G. et al. Gene Cloning, Expression, and Characterization of the Geobacillus Thermoleovorans CCR11 Thermoalkaliphilic Lipase. Mol Biotechnol 42, 75–83 (2009). https://doi.org/10.1007/s12033-008-9136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9136-6

Keywords

Navigation