Skip to main content

Advertisement

Log in

Functional Evolution of Cyclin-Dependent Kinases

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases with a well established role in the regulation of the eukaryotic cell cycle. Recent studies with animal cells have implicated CDK activity in additional diverse cellular processes, including transcription, translation and mRNA processing. In plants, such CDK functions are poorly characterized and the implication of CDK phosphorylation in regulation of gene expression is just begining to emerge. In this review we compare CDK functions in plants, animals and yeasts with particular focus on the biological processes that different members participate in and regulate. Finally, based on the available information of CDK function, we propose an alternative evolutionary scenario for the CDK gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., & Hunt, T. (1983). Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 33, 389–396. doi:10.1016/0092-8674(83)90420-8.

    CAS  Google Scholar 

  2. Gautier, J., Norbury, C., Lohka, M., Nurse, P., & Maller, J. (1988). Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell, 54, 433–439. doi:10.1016/0092-8674(88)90206-1.

    CAS  Google Scholar 

  3. Hartwell, L. H., Culotti, J., Pringle, J. R., & Reid, B. J. (1974). Genetic control of the cell division cycle in yeast. Science, 183, 46–51. doi:10.1126/science.183.4120.46.

    CAS  Google Scholar 

  4. Nasmyth, K. A., & Reed, S. I. (1980). Isolation of genes by complementation in yeast: Molecular cloning of a cell-cycle gene. Proceedings of the National Academy of Sciences of the United States of America, 77, 2119–2123. doi:10.1073/pnas.77.4.2119.

    CAS  Google Scholar 

  5. Nurse, P., & Thuriaux, P. (1980). Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics, 96, 627–637.

    CAS  Google Scholar 

  6. Hindley, J., & Phear, G. A. (1984). Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe; patterns of splicing and homology to protein kinases. Gene, 31, 129–134. doi:10.1016/0378-1119(84)90203-8.

    CAS  Google Scholar 

  7. Morgan, D. O. (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annual Review of Cell and Developmental Biology, 13, 261–291. doi:10.1146/annurev.cellbio.13.1.261.

    CAS  Google Scholar 

  8. Dewitte, W., & Murray, J. A. (2003). The plant cell cycle. Annual Review of Plant Physiology and Plant Molecular Biology, 54, 235–264. doi:10.1146/annurev.arplant.54.031902.134836.

    CAS  Google Scholar 

  9. Lukas, J., Lukas, C., & Bartek, J. (2004). Mammalian cell cycle checkpoints: Signalling pathways and their organization in space and time. DNA Repair, 3, 997–1007. doi:10.1016/j.dnarep.2004.03.006.

    CAS  Google Scholar 

  10. Van’t Hof, J. (1966). Inhibition of mitosis in Pisum root meristems by continuous gamma radiation: The influence of temperature on the synthesis of DNA, RNA and protein during inhibition. American Journal of Botany, 53, 246–252. doi:10.2307/2439793.

    Google Scholar 

  11. Sherr, C. J., & Roberts, J. M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes & Development, 18, 2699–2711. doi:10.1101/gad.1256504.

    CAS  Google Scholar 

  12. Mendenhall, M. D., & Hodge, A. E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62, 1191–1243.

    CAS  Google Scholar 

  13. Sherr, C. J. (1995). D-type cyclins. Trends in Biochemical Sciences, 20, 187–190. doi:10.1016/S0968-0004(00)89005-2.

    CAS  Google Scholar 

  14. Coverley, D., Laman, H., & Laskey, R. A. (2002). Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nature Cell Biology, 4, 523–528. doi:10.1038/ncb813.

    CAS  Google Scholar 

  15. Mitra, J., & Enders, G. H. (2004). Cyclin A/Cdk2 complexes regulate activation of Cdk1 and Cdc25 phosphatases in human cells. Oncogene, 23, 3361–3367. doi:10.1038/sj.onc.1207446.

    CAS  Google Scholar 

  16. Riou-Khamlichi, C., Huntley, R., Jacqmard, A., & Murray, J. A. (1999). Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science, 283, 1541–1544. doi:10.1126/science.283.5407.1541.

    CAS  Google Scholar 

  17. Riou-Khamlichi, C., Menges, M., Healy, J. M., & Murray, J. A. (2000). Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Molecular and Cellular Biology, 20, 4513–4521. doi:10.1128/MCB.20.13.4513-4521.2000.

    CAS  Google Scholar 

  18. Healy, J. M., Menges, M., Doonan, J. H., & Murray, J. A. (2001). The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. The Journal of Biological Chemistry, 276, 7041–7047. doi:10.1074/jbc.M009074200.

    CAS  Google Scholar 

  19. Huntley, R., Healy, S., Freeman, D., Lavender, P., de Jager, S., Greenwood, J., et al. (1998). The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Molecular Biology, 37, 155–169. doi:10.1023/A:1005902226256.

    CAS  Google Scholar 

  20. Meijer, M., & Murray, J. A. H. (2000). The role and regulation of D-type cyclins in the plant cell cycle. Plant Molecular Biology, 43, 621–633. doi:10.1023/A:1006482115915.

    CAS  Google Scholar 

  21. De Veylder, L., Joubes, J., & Inze, D. (2003). Plant cell cycle transitions. Current Opinion in Plant Biology, 6, 536–543. doi:10.1016/j.pbi.2003.09.001.

    Google Scholar 

  22. Kawamura, K., Murray, J. A., Shinmyo, A., & Sekine, M. (2006). Cell cycle regulated D3-type cyclins form active complexes with plant-specific B-type cyclin-dependent kinase in vitro. Plant Molecular Biology, 61, 311–327. doi:10.1007/s11103-006-0014-y.

    CAS  Google Scholar 

  23. Menges, M., de Jager, S. M., Gruissem, W., & Murray, J. A. (2005). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. The Plant Journal, 41, 546–566. doi:10.1111/j.1365-313X.2004.02319.x.

    CAS  Google Scholar 

  24. Wang, H., Qi, Q., Schorr, P., Cutler, A. J., Crosby, W. L., & Fowke, L. C. (1998). ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. The Plant Journal, 15, 501–510. doi:10.1046/j.1365-313X.1998.00231.x.

    Google Scholar 

  25. De Veylder, L., Beeckman, T., Beemster, G. T., Krols, L., Terras, F., Landrieu, I., et al. (2001). Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell, 13, 1653–1668.

    Google Scholar 

  26. Zhou, Y., Wang, H., Gilmer, S., Whitwill, S., & Fowke, L. C. (2003). Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana. Planta, 216, 604–613.

    CAS  Google Scholar 

  27. Roudier, F., Fedorova, E., Gyorgyey, J., Feher, A., Brown, S., Kondorosi, A., et al. (2000). Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. The Plant Journal, 23, 73–83. doi:10.1046/j.1365-313x.2000.00794.x.

    CAS  Google Scholar 

  28. Wang, G., Kong, H., Sun, Y., Zhang, X., Zhang, W., Altman, N., et al. (2004). Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiology, 135, 1084–1099. doi:10.1104/pp.104.040436.

    CAS  Google Scholar 

  29. Chaubet-Gigot, N. (2000). Plant A-type cyclins. Plant Molecular Biology, 43, 659–675. doi:10.1023/A:1006303100592.

    CAS  Google Scholar 

  30. Reichheld, J. P., Chaubet, N., Shen, W. H., Renaudin, J. P., & Gigot, C. (1996). Multiple A-type cyclins express sequentially during the cell cycle in Nicotiana tabacum BY2 cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 13819–13824. doi:10.1073/pnas.93.24.13819.

    CAS  Google Scholar 

  31. Mews, M., Sek, F. J., Moore, R., Volkmann, D., Gunning, B. E. S., & John, P. L. C. (1997). Mitotic cyclin distribution during maize cell division: Implications for the sequence diversity and function of cyclins in plants. Protoplasma, 200, 128–146. doi:10.1007/BF01283289.

    CAS  Google Scholar 

  32. Criqui, M. C., Weingartner, M., Capron, A., Parmentier, Y., Shen, W. H., Heberle-Bors, E., et al. (2001). Sub-cellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. The Plant Journal, 28, 569–581. doi:10.1046/j.1365-313X.2001.01180.x.

    CAS  Google Scholar 

  33. Yu, Y., Steinmetz, A., Meyer, D., Brown, S., & Shen, W. H. (2003). The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. The Plant Cell, 15, 2763–2777. doi:10.1105/tpc.015990.

    CAS  Google Scholar 

  34. Brandeis, M., Rosewell, I., Carrington, M., Crompton, T., Jacobs, M. A., Kirk, J., et al. (1998). Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proceedings of the National Academy of Sciences of the United States of America, 95, 4344–4349. doi:10.1073/pnas.95.8.4344.

    CAS  Google Scholar 

  35. Ohi, R., & Gould, K. L. (1999). Regulating the onset of mitosis. Current Opinion in Cell Biology, 11, 267–273. doi:10.1016/S0955-0674(99)80036-2.

    CAS  Google Scholar 

  36. Nigg, E. A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nature Reviews. Molecular Cell Biology, 2, 21–32. doi:10.1038/35048096.

    CAS  Google Scholar 

  37. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M., & Peters, J. M. (2000). Mitotic regulation of the APC activator proteins CDC20 and CDH1. Molecular Biology of the Cell, 11, 1555–1569.

    CAS  Google Scholar 

  38. Ubersax, J. A., Woodbury, E. L., Quang, P. N., Paraz, M., Blethrow, J. D., Shah, K., et al. (2003). Targets of the cyclin-dependent kinase Cdk1. Nature, 425, 859–864. doi:10.1038/nature02062.

    CAS  Google Scholar 

  39. Nasmyth, K. (1993). Control of the yeast cell cycle by the Cdc28 protein kinase. Current Opinion in Cell Biology, 5, 166–179. doi:10.1016/0955-0674(93)90099-C.

    CAS  Google Scholar 

  40. Nasmyth, K. (1996). At the heart of the budding yeast cell cycle. Trends in Genetics, 12, 405–412. doi:10.1016/0168-9525(96)10041-X.

    CAS  Google Scholar 

  41. Doonan, J., & Fobert, P. (1997). Conserved and novel regulators of the plant cell cycle. Current Opinion in Cell Biology, 9, 824–830.

    CAS  Google Scholar 

  42. Fobert, P. R., Gaudin, V., Lunness, P., Coen, E. S., & Doonan, J. H. (1996). Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. The Plant Cell, 8, 1465–1476.

    CAS  Google Scholar 

  43. Schnittger, A., Schobinger, U., Stierhof, Y. D., & Hulskamp, M. (2002). Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Current Biology, 12, 415–420. doi:10.1016/S0960-9822(02)00693-0.

    CAS  Google Scholar 

  44. Weingartner, M., Pelayo, H. R., Binarova, P., Zwerger, K., Melikant, B., de la Torre, C., et al. (2003). A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. Journal of Cell Science, 116, 487–498. doi:10.1242/jcs.00250.

    CAS  Google Scholar 

  45. Rane, S. G., Dubus, P., Mettus, R. V., Galbreath, E. J., Boden, G., Reddy, E. P., et al. (1999). Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature Genetics, 22, 44–52. doi:10.1038/8751.

    CAS  Google Scholar 

  46. Tsutsui, T., Hesabi, B., Moons, D. S., Pandolfi, P. P., Hansel, K. S., Koff, A., et al. (1999). Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Molecular and Cellular Biology, 19, 7011–7019.

    CAS  Google Scholar 

  47. Moons, D. S., Jirawatnotai, S., Parlow, A. F., Gibori, G., Kineman, R. D., & Kiyokawa, H. (2002). Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology, 143, 3001–3008. doi:10.1210/en.143.8.3001.

    CAS  Google Scholar 

  48. Martin, J., Hunt, S. L., Dubus, P., Sotillo, R., Nehme-Pelluard, F., Magnuson, M. A., et al. (2003). Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene, 22, 5261–5269. doi:10.1038/sj.onc.1206506.

    CAS  Google Scholar 

  49. Malumbres, M., Sotillo, R., Santamaria, D., Galan, J., Cerezo, A., Ortega, S., et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell, 118, 493–504. doi:10.1016/j.cell.2004.08.002.

    CAS  Google Scholar 

  50. Kozar, K., Ciemerych, M. A., Rebel, V. I., Shigematsu, H., Zagozdzon, A., Sicinska, E., et al. (2004). Mouse development and cell proliferation in the absence of D-cyclins. Cell, 118, 477–491. doi:10.1016/j.cell.2004.07.025.

    CAS  Google Scholar 

  51. Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., et al. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genetics, 35, 25–31. doi:10.1038/ng1232.

    CAS  Google Scholar 

  52. Berthet, C., Aleem, E., Coppola, V., Tessarollo, L., & Kaldis, P. (2003). Cdk2 knockout mice are viable. Current Biology, 13, 1775–1785. doi:10.1016/j.cub.2003.09.024.

    CAS  Google Scholar 

  53. Martin, A., Odajima, J., Hunt, S. L., Dubus, P., Ortega, S., Malumbres, M., et al. (2005). Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell, 7, 591–598. doi:10.1016/j.ccr.2005.05.006.

    CAS  Google Scholar 

  54. Moore, J. D., Kirk, J. A., & Hunt, T. (2003). Unmasking the S-phase-promoting potential of cyclin B1. Science, 300, 987–990. doi:10.1126/science.1081418.

    CAS  Google Scholar 

  55. Aleem, E., Kiyokawa, H., & Kaldis, P. (2005). Cdc2-cyclin E complexes regulate the G1/S phase transition. Nature Cell Biology, 7, 831–836. doi:10.1038/ncb1284.

    CAS  Google Scholar 

  56. Malumbres, M., & Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in Biochemical Sciences, 30, 630–641. doi:10.1016/j.tibs.2005.09.005.

    CAS  Google Scholar 

  57. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T., & Weber, K. (2001). Identification of essential genes in cultured mammalian cells using small interfering RNAs. Journal of Cell Science, 114, 4557–4565.

    CAS  Google Scholar 

  58. Hemerly, A., Engler Jde, A., Bergounioux, C., Van Montagu, M., Engler, G., Inze, D., et al. (1995). Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. The EMBO Journal, 14, 3925–3936.

    CAS  Google Scholar 

  59. Hemerly, A. S., Ferreira, P. C., Van Montagu, M., Engler, G., & Inze, D. (2000). Cell division events are essential for embryo patterning and morphogenesis: Studies on dominant-negative cdc2aAt mutants of Arabidopsis. The Plant Journal, 23, 123–130. doi:10.1046/j.1365-313x.2000.00800.x.

    CAS  Google Scholar 

  60. Yoshizumi, T., Nagata, N., Shimada, H., & Matsui, M. (1999). An Arabidopsis cell cycle-dependent kinase-related gene, CDC2b, plays a role in regulating seedling growth in darkness. The Plant Cell, 11, 1883–1896.

    CAS  Google Scholar 

  61. Boudolf, V., Barroco, R., Engler Jde, A., Verkest, A., Beeckman, T., Naudts, M., et al. (2004). B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. The Plant Cell, 16, 945–955. doi:10.1105/tpc.021774.

    CAS  Google Scholar 

  62. Kaldis, P. (1999). The cdk-activating kinase (CAK): From yeast to mammals. Cellular and Molecular Life Sciences, 55, 284–296. doi:10.1007/s000180050290.

    CAS  Google Scholar 

  63. Buck, V., Russell, P., & Millar, J. B. (1995). Identification of a cdk-activating kinase in fission yeast. The EMBO Journal, 14, 6173–6183.

    CAS  Google Scholar 

  64. Damagnez, V., Makela, T. P., & Cottarel, G. (1995). Schizosaccharomyces pombe Mop1-Mcs2 is related to mammalian CAK. The EMBO Journal, 14, 6164–6172.

    CAS  Google Scholar 

  65. Hermand, D., Pihlak, A., Westerling, T., Damagnez, V., Vandenhaute, J., Cottarel, G., et al. (1998). Fission yeast Csk1 is a CAK-activating kinase (CAKAK). The EMBO Journal, 17, 7230–7238. doi:10.1093/emboj/17.24.7230.

    CAS  Google Scholar 

  66. Hermand, D., Westerling, T., Pihlak, A., Thuret, J. Y., Vallenius, T., Tiainen, M., et al. (2001). Specificity of Cdk activation in vivo by the two Caks Mcs6 and Csk1 in fission yeast. The EMBO Journal, 20, 82–90. doi:10.1093/emboj/20.1.82.

    CAS  Google Scholar 

  67. Saiz, J. E., & Fisher, R. P. (2002). A CDK-activating kinase network is required in cell cycle control and transcription in fission yeast. Current Biology, 12, 1100–1105. doi:10.1016/S0960-9822(02)00903-X.

    CAS  Google Scholar 

  68. Ross, K. E., Kaldis, P., & Solomon, M. J. (2000). Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, cdc28p, precedes cyclin binding. Molecular Biology of the Cell, 11, 1597–1609.

    CAS  Google Scholar 

  69. Cross, F. R., & Levine, K. (2000). Genetic analysis of the relationship between activation loop phosphorylation and cyclin binding in the activation of the Saccharomyces cerevisiae Cdc28p cyclin-dependent kinase. Genetics, 154, 1549–1559.

    CAS  Google Scholar 

  70. Feaver, W. J., Henry, N. L., Wang, Z., Wu, X., Svejstrup, J. Q., Bushnell, D. A., et al. (1997). Genes for Tfb2, Tfb3, and Tfb4 subunits of yeast transcription/repair factor IIH. Homology to human cyclin-dependent kinase activating kinase and IIH subunits. The Journal of Biological Chemistry, 272, 19319–19327. doi:10.1074/jbc.272.31.19319.

    CAS  Google Scholar 

  71. Keogh, M. C., Cho, E. J., Podolny, V., & Buratowski, S. (2002). Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Molecular and Cellular Biology, 22, 1288–1297. doi:10.1128/MCB.22.5.1288-1297.2002.

    CAS  Google Scholar 

  72. Hata, S. (1991). cDNA cloning of a novel cdc2+/CDC28-related protein kinase from rice. FEBS Letters, 279, 149–152. doi:10.1016/0014-5793(91)80271-4.

    CAS  Google Scholar 

  73. Yamaguchi, M., Fabian, T., Sauter, M., Bhalerao, R. P., Schrader, J., Sandberg, G., et al. (2000). Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. The Plant Journal, 24, 11–20. doi:10.1046/j.1365-313x.2000.00846.x.

    CAS  Google Scholar 

  74. Yamaguchi, M., Umeda, M., & Uchimiya, H. (1998). A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. The Plant Journal, 16, 613–619. doi:10.1046/j.1365-313x.1998.00338.x.

    CAS  Google Scholar 

  75. Shimotohno, A., Matsubayashi, S., Yamaguchi, M., Uchimiya, H., & Umeda, M. (2003). Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana. FEBS Letters, 534, 69–74. doi:10.1016/S0014-5793(02)03780-8.

    CAS  Google Scholar 

  76. Shimotohno, A., Ohno, R., Bisova, K., Sakaguchi, N., Huang, J., Koncz, C., et al. (2006). Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. The Plant Journal, 47, 701–710. doi:10.1111/j.1365-313X.2006.02820.x.

    CAS  Google Scholar 

  77. Kitsios, G. (2006). Characterization of Arabidopsis cyclin-dependent kinases. Norwich: The University of East Anglia.

    Google Scholar 

  78. Shimotohno, A., Umeda-Hara, C., Bisova, K., Uchimiya, H., & Umeda, M. (2004). The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. The Plant Cell, 16, 2954–2966. doi:10.1105/tpc.104.025601.

    CAS  Google Scholar 

  79. Liu, J., & Kipreos, E. T. (2000). Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): Differential conservation of CAKs in yeast and metazoa. Molecular Biology and Evolution, 17, 1061–1074.

    CAS  Google Scholar 

  80. Tsakraklides, V., & Solomon, M. J. (2002). Comparison of Cak1p-like cyclin-dependent kinase-activating kinases. The Journal of Biological Chemistry, 277, 33482–33489. doi:10.1074/jbc.M205537200.

    CAS  Google Scholar 

  81. Liu, Y., Wu, C., & Galaktionov, K. (2004). p42, a novel cyclin-dependent kinase-activating kinase in mammalian cells. The Journal of Biological Chemistry, 279, 4507–4514. doi:10.1074/jbc.M309995200.

    CAS  Google Scholar 

  82. Dynlacht, B. D. (1997). Regulation of transcription by proteins that control the cell cycle. Nature, 389, 149–152. doi:10.1038/38225.

    CAS  Google Scholar 

  83. Nelson, D. M., Ye, X., Hall, C., Santos, H., Ma, T., Kao, G. D., et al. (2002). Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Molecular and Cellular Biology, 22, 7459–7472. doi:10.1128/MCB.22.21.7459-7472.2002.

    CAS  Google Scholar 

  84. Khorasanizadeh, S. (2004). The nucleosome: From genomic organization to genomic regulation. Cell, 116, 259–272. doi:10.1016/S0092-8674(04)00044-3.

    CAS  Google Scholar 

  85. Brosch, G., Loidl, P., & Graessle, S. (2008). Histone modifications and chromatin dynamics: A focus on filamentous fungi. FEMS Microbiology Reviews, 32, 409–439. doi:10.1111/j.1574-6976.2007.00100.x.

    CAS  Google Scholar 

  86. Halmer, L., & Gruss, C. (1996). Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication. Nucleic Acids Research, 24, 1420–1427. doi:10.1093/nar/24.8.1420.

    CAS  Google Scholar 

  87. Chadee, D. N., Allis, C. D., Wright, J. A., & Davie, J. R. (1997). Histone H1b phosphorylation is dependent upon ongoing transcription and replication in normal and ras-transformed mouse fibroblasts. The Journal of Biological Chemistry, 272, 8113–8116. doi:10.1074/jbc.272.13.8113.

    CAS  Google Scholar 

  88. Dou, Y., Bowen, J., Liu, Y., & Gorovsky, M. A. (2002). Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. The Journal of Cell Biology, 158, 1161–1170. doi:10.1083/jcb.200202131.

    CAS  Google Scholar 

  89. Dou, Y., & Gorovsky, M. A. (2000). Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Molecular Cell, 6, 225–231. doi:10.1016/S1097-2765(00)00024-1.

    CAS  Google Scholar 

  90. Dou, Y., Mizzen, C. A., Abrams, M., Allis, C. D., & Gorovsky, M. A. (1999). Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Molecular Cell, 4, 641–647. doi:10.1016/S1097-2765(00)80215-4.

    CAS  Google Scholar 

  91. Langan, T. A., Gautier, J., Lohka, M., Hollingsworth, R., Moreno, S., Nurse, P., et al. (1989). Mammalian growth-associated H1 histone kinase: A homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Molecular and Cellular Biology, 9, 3860–3868.

    CAS  Google Scholar 

  92. Herrera, R. E., Chen, F., & Weinberg, R. A. (1996). Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 93, 11510–11515. doi:10.1073/pnas.93.21.11510.

    CAS  Google Scholar 

  93. Chadee, D. N., Peltier, C. P., & Davie, J. R. (2002). Histone H1(S)-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts. Oncogene, 21, 8397–8403. doi:10.1038/sj.onc.1206029.

    CAS  Google Scholar 

  94. Bhattacharjee, R. N., Banks, G. C., Trotter, K. W., Lee, H. L., & Archer, T. K. (2001). Histone H1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling. Molecular and Cellular Biology, 21, 5417–5425. doi:10.1128/MCB.21.16.5417-5425.2001.

    CAS  Google Scholar 

  95. Alexandrow, M. G., & Hamlin, J. L. (2005). Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. The Journal of Cell Biology, 168, 875–886. doi:10.1083/jcb.200409055.

    CAS  Google Scholar 

  96. Contreras, A., Hale, T. K., Stenoien, D. L., Rosen, J. M., Mancini, M. A., & Herrera, R. E. (2003). The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Molecular and Cellular Biology, 23, 8626–8636. doi:10.1128/MCB.23.23.8626-8636.2003.

    CAS  Google Scholar 

  97. Hale, T. K., Contreras, A., Morrison, A. J., & Herrera, R. E. (2006). Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha. Molecular Cell, 22, 693–699. doi:10.1016/j.molcel.2006.04.016.

    CAS  Google Scholar 

  98. Magyar, Z., Meszaros, T., Miskolczi, P., Deak, M., Feher, A., Brown, S., et al. (1997). Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. The Plant Cell, 9, 223–235.

    CAS  Google Scholar 

  99. Cockcroft, C. E., den Boer, B. G., Healy, J. M., & Murray, J. A. (2000). Cyclin D control of growth rate in plants. Nature, 405, 575–579. doi:10.1038/35014621.

    CAS  Google Scholar 

  100. Sorrell, D. A., Menges, M., Healy, J. M., Deveaux, Y., Amano, C., Su, Y., et al. (2001). Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. Plant Physiology, 126, 1214–1223. doi:10.1104/pp.126.3.1214.

    CAS  Google Scholar 

  101. Nakagami, H., Kawamura, K., Sugisaka, K., Sekine, M., & Shinmyo, A. (2002). Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. The Plant Cell, 14, 1847–1857. doi:10.1105/tpc.002550.

    CAS  Google Scholar 

  102. Koroleva, O. A., Tomlinson, M., Parinyapong, P., Sakvarelidze, L., Leader, D., Shaw, P., et al. (2004). CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. The Plant Cell, 16, 2364–2379. doi:10.1105/tpc.104.023754.

    CAS  Google Scholar 

  103. Griffiths, S., Sharp, R., Foote, T. N., Bertin, I., Wanous, M., Reader, S., et al. (2006). Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 439, 749–752. doi:10.1038/nature04434.

    CAS  Google Scholar 

  104. Al-Kaff, N., Knight, E., Bertin, I., Foote, T., Hart, N., Griffiths, S., et al. (2008). Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: With deletion mutants and expression profiling. Annals of Botany, 101, 863–872. doi:10.1093/aob/mcm252.

    CAS  Google Scholar 

  105. Prieto, P., Shaw, P., & Moore, G. (2004). Homologue recognition during meiosis is associated with a change in chromatin conformation. Nature Cell Biology, 6, 906–908. doi:10.1038/ncb1168.

    CAS  Google Scholar 

  106. Bregman, D. B., Pestell, R. G., & Kidd, V. J. (2000). Cell cycle regulation and RNA polymerase II. Frontiers in Bioscience, 5, D244–D257. doi:10.2741/Bregman.

    CAS  Google Scholar 

  107. Hampsey, M., & Reinberg, D. (1999). RNA polymerase II as a control panel for multiple coactivator complexes. Current Opinion in Genetics and Development, 9, 132–139. doi:10.1016/S0959-437X(99)80020-3.

    CAS  Google Scholar 

  108. Bentley, D. (1999). Coupling RNA polymerase II transcription with pre-mRNA processing. Current Opinion in Cell Biology, 11, 347–351. doi:10.1016/S0955-0674(99)80048-9.

    CAS  Google Scholar 

  109. Prelich, G. (2002). RNA polymerase II carboxy-terminal domain kinases: Emerging clues to their function. Eukaryotic Cell, 1, 153–162. doi:10.1128/EC.1.2.153-162.2002.

    CAS  Google Scholar 

  110. Guo, Z., & Stiller, J. W. (2004). Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics, 5, 69. doi:10.1186/1471-2164-5-69.

    Google Scholar 

  111. Pinhero, R., Liaw, P., Bertens, K., & Yankulov, K. (2004). Three cyclin-dependent kinases preferentially phosphorylate different parts of the C-terminal domain of the large subunit of RNA polymerase II. European Journal of Biochemistry, 271, 1004–1014. doi:10.1111/j.1432-1033.2004.04002.x.

    CAS  Google Scholar 

  112. Garriga, J., & Grana, X. (2004). Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene, 337, 15–23. doi:10.1016/j.gene.2004.05.007.

    CAS  Google Scholar 

  113. Wallenfang, M. R., & Seydoux, G. (2002). cdk-7 is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proceedings of the National Academy of Sciences of the United States of America, 99, 5527–5532. doi:10.1073/pnas.082618399.

    CAS  Google Scholar 

  114. Rossignol, M., Kolb-Cheynel, I., & Egly, J. M. (1997). Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. The EMBO Journal, 16, 1628–1637. doi:10.1093/emboj/16.7.1628.

    CAS  Google Scholar 

  115. Yankulov, K. Y., & Bentley, D. L. (1997). Regulation of CDK7 substrate specificity by MAT1 and TFIIH. The EMBO Journal, 16, 1638–1646. doi:10.1093/emboj/16.7.1638.

    CAS  Google Scholar 

  116. Korsisaari, N., Rossi, D. J., Paetau, A., Charnay, P., Henkemeyer, M., & Makela, T. P. (2002). Conditional ablation of the Mat1 subunit of TFIIH in Schwann cells provides evidence that Mat1 is not required for general transcription. Journal of Cell Science, 115, 4275–4284. doi:10.1242/jcs.00121.

    CAS  Google Scholar 

  117. Tassan, J. P., Jaquenoud, M., Leopold, P., Schultz, S. J., & Nigg, E. A. (1995). Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proceedings of the National Academy of Sciences of the United States of America, 92, 8871–8875. doi:10.1073/pnas.92.19.8871.

    CAS  Google Scholar 

  118. Rickert, P., Seghezzi, W., Shanahan, F., Cho, H., & Lees, E. (1996). Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene, 12, 2631–2640.

    CAS  Google Scholar 

  119. Malik, S., & Roeder, R. G. (2000). Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends in Biochemical Sciences, 25, 277–283. doi:10.1016/S0968-0004(00)01596-6.

    CAS  Google Scholar 

  120. Holstege, F. C., Fiedler, U., & Timmers, H. T. (1997). Three transitions in the RNA polymerase II transcription complex during initiation. The EMBO Journal, 16, 7468–7480. doi:10.1093/emboj/16.24.7468.

    CAS  Google Scholar 

  121. Koleske, A. J., & Young, R. A. (1995). The RNA polymerase II holoenzyme and its implications for gene regulation. Trends in Biochemical Sciences, 20, 113–116. doi:10.1016/S0968-0004(00)88977-X.

    CAS  Google Scholar 

  122. Firestein, R., Bass, A. J., Kim, S. Y., Dunn, I. F., Silver, S. J., Guney, I., et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature, 455, 547–551. doi:10.1038/nature07179.

    CAS  Google Scholar 

  123. Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455, 552–556. doi:10.1038/nature07310.

    CAS  Google Scholar 

  124. Vandepoele, K., Raes, J., De Veylder, L., Rouze, P., Rombauts, S., & Inze, D. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. The Plant Cell, 14, 903–916. doi:10.1105/tpc.010445.

    CAS  Google Scholar 

  125. Wang, W., & Chen, X. (2004). HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis. Development, 131, 3147–3156. doi:10.1242/dev.01187.

    CAS  Google Scholar 

  126. Garriga, J., Mayol, X., & Grana, X. (1996). The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes. The Biochemical Journal, 319(Pt 1), 293–298.

    CAS  Google Scholar 

  127. Garriga, J., Segura, E., Mayol, X., Grubmeyer, C., & Grana, X. (1996). Phosphorylation site specificity of the CDC2-related kinase PITALRE. The Biochemical Journal, 320(Pt 3), 983–989.

    CAS  Google Scholar 

  128. Peng, J., Marshall, N. F., & Price, D. H. (1998). Identification of a cyclin subunit required for the function of Drosophila P-TEFb. The Journal of Biological Chemistry, 273, 13855–13860. doi:10.1074/jbc.273.22.13855.

    CAS  Google Scholar 

  129. Peng, J., Zhu, Y., Milton, J. T., & Price, D. H. (1998). Identification of multiple cyclin subunits of human P-TEFb. Genes & Development, 12, 755–762. doi:10.1101/gad.12.5.755.

    CAS  Google Scholar 

  130. Fu, T. J., Peng, J., Lee, G., Price, D. H., & Flores, O. (1999). Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. The Journal of Biological Chemistry, 274, 34527–34530. doi:10.1074/jbc.274.49.34527.

    CAS  Google Scholar 

  131. Price, D. H. (2000). P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Molecular and Cellular Biology, 20, 2629–2634. doi:10.1128/MCB.20.8.2629-2634.2000.

    CAS  Google Scholar 

  132. Chao, S. H., Fujinaga, K., Marion, J. E., Taube, R., Sausville, E. A., Senderowicz, A. M., et al. (2000). Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. The Journal of Biological Chemistry, 275, 28345–28348. doi:10.1074/jbc.C000446200.

    CAS  Google Scholar 

  133. Chao, S. H., & Price, D. H. (2001). Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. The Journal of Biological Chemistry, 276, 31793–31799. doi:10.1074/jbc.M102306200.

    CAS  Google Scholar 

  134. Garriga, J., Peng, J., Parreno, M., Price, D. H., Henderson, E. E., & Grana, X. (1998). Upregulation of cyclin T1/CDK9 complexes during T cell activation. Oncogene, 17, 3093–3102. doi:10.1038/sj.onc.1202548.

    CAS  Google Scholar 

  135. Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H., & Jones, K. A. (1998). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell, 92, 451–462. doi:10.1016/S0092-8674(00)80939-3.

    CAS  Google Scholar 

  136. Kobor, M. S., & Greenblatt, J. (2002). Regulation of transcription elongation by phosphorylation. Biochimica et Biophysica Acta, 1577, 261–275.

    CAS  Google Scholar 

  137. Barroco, R. M., De Veylder, L., Magyar, Z., Engler, G., Inze, D., & Mironov, V. (2003). Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cellular and Molecular Life Sciences, 60, 401–412. doi:10.1007/s000180300033.

    CAS  Google Scholar 

  138. Fulop, K., Pettko-Szandtner, A., Magyar, Z., Miskolczi, P., Kondorosi, E., Dudits, D., et al. (2005). The Medicago CDKC;1-CYCLINT;1 kinase complex phosphorylates the carboxy-terminal domain of RNA polymerase II and promotes transcription. The Plant Journal, 42, 810–820. doi:10.1111/j.1365-313X.2005.02421.x.

    Google Scholar 

  139. Cui, X., Fan, B., Scholz, J., & Chen, Z. (2007). Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. The Plant Cell, 19, 1388–1402. doi:10.1105/tpc.107.051375.

    CAS  Google Scholar 

  140. Gebara, M. M., Sayre, M. H., & Corden, J. L. (1997). Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. Journal of Cellular Biochemistry, 64, 390–402. doi :10.1002/(SICI)1097-4644(19970301)64:3<390::AID-JCB6>3.0.CO;2-Q.

    CAS  Google Scholar 

  141. Long, J. J., Leresche, A., Kriwacki, R. W., & Gottesfeld, J. M. (1998). Repression of TFIIH transcriptional activity and TFIIH-associated cdk7 kinase activity at mitosis. Molecular and Cellular Biology, 18, 1467–1476.

    CAS  Google Scholar 

  142. Akoulitchev, S., & Reinberg, D. (1998). The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes & Development, 12, 3541–3550. doi:10.1101/gad.12.22.3541.

    CAS  Google Scholar 

  143. Trembley, J. H., Hu, D., Hsu, L. C., Yeung, C. Y., Slaughter, C., Lahti, J. M., et al. (2002). PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. The Journal of Biological Chemistry, 277, 2589–2596. doi:10.1074/jbc.M109755200.

    CAS  Google Scholar 

  144. Li, T., Inoue, A., Lahti, J. M., & Kidd, V. J. (2004). Failure to proliferate and mitotic arrest of CDK11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development. Molecular and Cellular Biology, 24, 3188–3197. doi:10.1128/MCB.24.8.3188-3197.2004.

    CAS  Google Scholar 

  145. Kasten, M., & Giordano, A. (2001). Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene, 20, 1832–1838. doi:10.1038/sj.onc.1204295.

    CAS  Google Scholar 

  146. Graves, B. J., & Petersen, J. M. (1998). Specificity within the ets family of transcription factors. Advances in Cancer Research, 75, 1–55. doi:10.1016/S0065-230X(08)60738-1.

    CAS  Google Scholar 

  147. Buggy, Y., Maguire, T. M., McDermott, E., Hill, A. D., O’Higgins, N., & Duffy, M. J. (2006). Ets2 transcription factor in normal and neoplastic human breast tissue. European Journal of Cancer, 42, 485–491. doi:10.1016/j.ejca.2005.10.018.

    CAS  Google Scholar 

  148. Xu, D., Dwyer, J., Li, H., Duan, W., & Liu, J. P. (2008). Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. The Journal of Biological Chemistry, 283, 23567–23580. doi:10.1074/jbc.M800790200.

    CAS  Google Scholar 

  149. Dwyer, J., Li, H., Xu, D., & Liu, J. P. (2007). Transcriptional regulation of telomerase activity: Roles of the the Ets transcription factor family. Annals of the New York Academy of Sciences, 1114, 36–47. doi:10.1196/annals.1396.022.

    CAS  Google Scholar 

  150. Baker, K. M., Wei, G., Schaffner, A. E., & Ostrowski, M. C. (2003). Ets-2 and components of mammalian SWI/SNF form a repressor complex that negatively regulates the BRCA1 promoter. The Journal of Biological Chemistry, 278, 17876–17884. doi:10.1074/jbc.M209480200.

    CAS  Google Scholar 

  151. Iorns, E., Turner, N. C., Elliott, R., Syed, N., Garrone, O., Gasco, M., et al. (2008). Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell, 13, 91–104. doi:10.1016/j.ccr.2008.01.001.

    CAS  Google Scholar 

  152. Lord, C. J., Iorns, E., & Ashworth, A. (2008). Dissecting resistance to endocrine therapy in breast cancer. Cell Cycle (Georgetown, Tex.), 7, 1895–1898.

    CAS  Google Scholar 

  153. Li, S., MacLachlan, T. K., De Luca, A., Claudio, P. P., Condorelli, G., & Giordano, A. (1995). The cdc-2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Research, 55, 3992–3995.

    CAS  Google Scholar 

  154. Marques, F., Moreau, J. L., Peaucellier, G., Lozano, J. C., Schatt, P., Picard, A., et al. (2000). A new subfamily of high molecular mass CDC2-related kinases with PITAI/VRE motifs. Biochemical and Biophysical Research Communications, 279, 832–837. doi:10.1006/bbrc.2000.4042.

    CAS  Google Scholar 

  155. Ko, T. K., Kelly, E., & Pines, J. (2001). CrkRS: A novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. Journal of Cell Science, 114, 2591–2603.

    CAS  Google Scholar 

  156. Chen, H. H., Wang, Y. C., & Fann, M. J. (2006). Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Molecular and Cellular Biology, 26, 2736–2745. doi:10.1128/MCB.26.7.2736-2745.2006.

    CAS  Google Scholar 

  157. Chen, H. H., Wong, Y. H., Geneviere, A. M., & Fann, M. J. (2007). CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochemical and Biophysical Research Communications, 354, 735–740. doi:10.1016/j.bbrc.2007.01.049.

    CAS  Google Scholar 

  158. Trembley, J. H., Loyer, P., Hu, D., Li, T., Grenet, J., Lahti, J. M., et al. (2004). Cyclin dependent kinase 11 in RNA transcription and splicing. Progress in Nucleic Acid Research and Molecular Biology, 77, 263–288. doi:10.1016/S0079-6603(04)77007-5.

    CAS  Google Scholar 

  159. Loyer, P., Trembley, J. H., Lahti, J. M., & Kidd, V. J. (1998). The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. Journal of Cell Science, 111(Pt 11), 1495–1506.

    CAS  Google Scholar 

  160. Hu, D., Mayeda, A., Trembley, J. H., Lahti, J. M., & Kidd, V. J. (2003). CDK11 complexes promote pre-mRNA splicing. The Journal of Biological Chemistry, 278, 8623–8629. doi:10.1074/jbc.M210057200.

    CAS  Google Scholar 

  161. Loyer, P., Trembley, J. H., Grenet, J. A., Busson, A., Corlu, A., Zhao, W., et al. (2008). Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors: Influence of cyclin L isoforms on splice site selection. Journal of Biological Chemistry, 283(12), 7721–7732.

    CAS  Google Scholar 

  162. Kitsios, G., Alexiou, K. G., Bush, M., Shaw, P., & Doonan, J. H. (2008). A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates the distribution of spliceosomal components in Arabidopsis. The Plant Journal, 54, 220–235. doi:10.1111/j.1365-313X.2008.03414.x.

    CAS  Google Scholar 

  163. Sonenberg, N., & Dever, T. E. (2003). Eukaryotic translation initiation factors and regulators. Current Opinion in Structural Biology, 13, 56–63. doi:10.1016/S0959-440X(03)00009-5.

    CAS  Google Scholar 

  164. Pyronnet, S., & Sonenberg, N. (2001). Cell-cycle-dependent translational control. Current Opinion in Genetics and Development, 11, 13–18. doi:10.1016/S0959-437X(00)00150-7.

    CAS  Google Scholar 

  165. Hershey, J. W. (1991). Translational control in mammalian cells. Annual Review of Biochemistry, 60, 717–755. doi:10.1146/annurev.bi.60.070191.003441.

    CAS  Google Scholar 

  166. Sonenberg, N., & Gingras, A. C. (1998). The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Current Opinion in Cell Biology, 10, 268–275. doi:10.1016/S0955-0674(98)80150-6.

    CAS  Google Scholar 

  167. Minich, W. B., Balasta, M. L., Goss, D. J., & Rhoads, R. E. (1994). Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: Increased cap affinity of the phosphorylated form. Proceedings of the National Academy of Sciences of the United States of America, 91, 7668–7672. doi:10.1073/pnas.91.16.7668.

    CAS  Google Scholar 

  168. Bu, X., Haas, D. W., & Hagedorn, C. H. (1993). Novel phosphorylation sites of eukaryotic initiation factor-4F and evidence that phosphorylation stabilizes interactions of the p25 and p220 subunits. The Journal of Biological Chemistry, 268, 4975–4978.

    CAS  Google Scholar 

  169. Pyronnet, S., Imataka, H., Gingras, A. C., Fukunaga, R., Hunter, T., & Sonenberg, N. (1999). Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. The EMBO Journal, 18, 270–279. doi:10.1093/emboj/18.1.270.

    CAS  Google Scholar 

  170. Raught, B., Gingras, A. C., Gygi, S. P., Imataka, H., Morino, S., Gradi, A., et al. (2000). Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. The EMBO Journal, 19, 434–444. doi:10.1093/emboj/19.3.434.

    CAS  Google Scholar 

  171. Raught, B., Peiretti, F., Gingras, A. C., Livingstone, M., Shahbazian, D., Mayeur, G. L., et al. (2004). Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. The EMBO Journal, 23, 1761–1769. doi:10.1038/sj.emboj.7600193.

    CAS  Google Scholar 

  172. Samuel, C. E. (1993). The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. The Journal of Biological Chemistry, 268, 7603–7606.

    CAS  Google Scholar 

  173. Qin, H., Raught, B., Sonenberg, N., Goldstein, E. G., & Edelman, A. M. (2003). Phosphorylation screening identifies translational initiation factor 4GII as an intracellular target of Ca(2+)/calmodulin-dependent protein kinase I. The Journal of Biological Chemistry, 278, 48570–48579. doi:10.1074/jbc.M308781200.

    CAS  Google Scholar 

  174. Shi, J., Feng, Y., Goulet, A. C., Vaillancourt, R. R., Sachs, N. A., Hershey, J. W., et al. (2003). The p34cdc2-related cyclin-dependent kinase 11 interacts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis. The Journal of Biological Chemistry, 278, 5062–5071. doi:10.1074/jbc.M206427200.

    CAS  Google Scholar 

  175. Heesom, K. J., Gampel, A., Mellor, H., & Denton, R. M. (2001). Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Current Biology, 11, 1374–1379. doi:10.1016/S0960-9822(01)00422-5.

    CAS  Google Scholar 

  176. Mendez, R., Barnard, D., & Richter, J. D. (2002). Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. The EMBO Journal, 21, 1833–1844. doi:10.1093/emboj/21.7.1833.

    CAS  Google Scholar 

  177. Browning, K. S. (2004). Plant translation initiation factors: It is not easy to be green. Biochemical Society Transactions, 32, 589–591. doi:10.1042/BST0320589.

    CAS  Google Scholar 

  178. Hutchins, A. P., Roberts, G. R., Lloyd, C. W., & Doonan, J. H. (2004). In vivo interaction between CDKA and eIF4A: A possible mechanism linking translation and cell proliferation. FEBS Letters, 556, 91–94. doi:10.1016/S0014-5793(03)01382-6.

    CAS  Google Scholar 

  179. Lamond, A. I., & Spector, D. L. (2003). Nuclear speckles: A model for nuclear organelles. Nature Reviews. Molecular Cell Biology, 4, 605–612. doi:10.1038/nrm1172.

    CAS  Google Scholar 

  180. Krylov, D. M., Nasmyth, K., & Koonin, E. V. (2003). Evolution of eukaryotic cell cycle regulation: Stepwise addition of regulatory kinases and late advent of the CDKs. Current Biology, 13, 173–177. doi:10.1016/S0960-9822(03)00008-3.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Dennis Francis, Dr Max Bush and Dr Ming Yang for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Doonan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doonan, J.H., Kitsios, G. Functional Evolution of Cyclin-Dependent Kinases. Mol Biotechnol 42, 14–29 (2009). https://doi.org/10.1007/s12033-008-9126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9126-8

Keywords

Navigation