Skip to main content

Advertisement

Log in

MitoP2: An Integrative Tool for the Analysis of the Mitochondrial Proteome

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Mitochondria are crucial for normal cell metabolism and maintenance. Mitochondrial dysfunction has been implicated in a spectrum of human diseases, ranging from rare monogenic to common multifactorial disorders. Important for the understanding of organelle function is the assignment of its constituents, and although over 1,500 proteins are predicted to be involved in mammalian mitochondrial function, so far only about 900 are assigned to mitochondria with reasonable certainty. Continuing efforts are being taken to obtain a complete inventory of the mitochondrial proteome by single protein studies and high-throughput approaches. To be of best value for the scientific community this data needs to be structured, explored, and customized. For this purpose, the MitoP2 database (http://www.mitop2.de) was established and is maintained in order to incorporate such data. The central database contains manually evaluated yeast, mouse, and human reference proteins, which show convincing evidence of a mitochondrial location. In addition, entries from genome-wide approaches that suggest protein localization are integrated and serve to compile a combined score for each candidate, which provides a best estimate of mitochondrial localization. Furthermore, it integrates information on the orthology between species, including Saccharomyces cerevisiae, mouse, human, Arabidopsis thaliana, and Neurospora crassa, thus mutually enhancing evidence across species. In contrast to other known databases, MitoP2 takes into account the reliability by which the protein is estimated as being mitochondrially located, as described herein. Multiple search functions, as well as information on disease causing genes and available mouse models, makes MitoP2 a valuable tool for the genetic investigation of human mitochondrial pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DiMauro, S., & Schon, E. A. (2003). Mitochondrial respiratory-chain diseases. The New England Journal of Medicine, 348, 2656–2668. doi:10.1056/NEJMra022567.

    Article  CAS  Google Scholar 

  2. Lowell, B. B., & Shulman, G. I. (2005). Mitochondrial dysfunction and type 2 diabetes. Science, 307, 384–387. doi:10.1126/science.1104343.

    Article  CAS  Google Scholar 

  3. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787–795. doi:10.1038/nature05292.

    Article  CAS  Google Scholar 

  4. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407. doi:10.1146/annurev.genet.39.110304.095751.

    Article  CAS  Google Scholar 

  5. Prokisch, H., Scharfe, C., Camp, D. G., Xiao, W., David, L., Andreoli, C., et al. (2004). Integrative analysis of the mitochondrial proteome in yeast. PLoS Biology, 2, e160. doi:10.1371/journal.pbio.0020160.

    Article  Google Scholar 

  6. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., et al. (2003). Global analysis of protein localization in budding yeast. Nature, 425, 686–691. doi:10.1038/nature02026.

    Article  CAS  Google Scholar 

  7. Kumar, A., Cheung, K. H., Tosches, N., Masiar, P., Liu, Y., Miller, P., et al. (2002). The TRIPLES database: A community resource for yeast molecular biology. Nucleic Acids Research, 30, 73–75. doi:10.1093/nar/30.1.73.

    Article  CAS  Google Scholar 

  8. Prokisch, H., Andreoli, C., Ahting, U., Heiss, K., Ruepp, A., Scharfe, C., et al. (2006). MitoP2: The mitochondrial proteome database—now including mouse data. Nucleic Acids Research, 34, D705–D711. doi:10.1093/nar/gkj127.

    Article  CAS  Google Scholar 

  9. Perocchi, F., Jensen, L. J., Gagneur, J., Ahting, U., von Mering, C., Bork, P., et al. (2006). Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLOS Genetics, 2, e170. doi:10.1371/journal.pgen.0020170.

    Article  Google Scholar 

  10. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. doi:10.1093/nar/25.17.3389.

    Article  CAS  Google Scholar 

  11. Nakai, K., & Horton, P. (1999). PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences, 24, 34–36. doi:10.1016/S0968-0004(98)01336-X.

    Article  CAS  Google Scholar 

  12. Small, I., Peeters, N., Legeai, F., & Lurin, C. (2004). Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics, 4, 1581–1590. doi:10.1002/pmic.200300776.

    Article  CAS  Google Scholar 

  13. Hua, S., & Sun, Z. (2001). Support vector machine approach for protein subcellular localization prediction. Bioinformatics (Oxford, England), 17, 721–728. doi:10.1093/bioinformatics/17.8.721.

    Article  CAS  Google Scholar 

  14. Drawid, A., & Gerstein, M. (2000). A Bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome. Journal of Molecular Biology, 301, 1059–1075. doi:10.1006/jmbi.2000.3968.

    Article  CAS  Google Scholar 

  15. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25, 25–29. doi:10.1038/75556.

    Article  CAS  Google Scholar 

  16. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., et al. (2002). Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 417, 399–403. doi:10.1038/nature750.

    Article  Google Scholar 

  17. Cherry, J. M., Ball, C., Weng, S., Juvik, G., Schmidt, R., Adler, C., et al. (1997). Genetic and physical maps of Saccharomyces cerevisiae. Nature, 387, 67–73. doi:10.1038/43025.

    Article  CAS  Google Scholar 

  18. Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., Hester, E. T., et al. (1998). SGD: Saccharomyces Genome Database. Nucleic Acids Research, 26, 73–79. doi:10.1093/nar/26.1.73.

    Article  CAS  Google Scholar 

  19. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., et al. (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 32, 5539–5545. doi:10.1093/nar/gkh894.

    Article  CAS  Google Scholar 

  20. Mewes, H. W., Dietmann, S., Frishman, D., Gregory, R., Mannhaupt, G., Mayer, K. F., et al. (2008). MIPS: Analysis and annotation of genome information in 2007. Nucleic Acids Research, 36, D196–D201. doi:10.1093/nar/gkm980.

    Article  CAS  Google Scholar 

  21. Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., et al. (2006). ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nature Biotechnology, 24, 841–847. doi:10.1038/nbt1222.

    Article  CAS  Google Scholar 

  22. DeRisi, J. L., Iyer, V. R., & Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680–686. doi:10.1126/science.278.5338.680.

    Article  CAS  Google Scholar 

  23. Lascaris, R., Bussemaker, H. J., Boorsma, A., Piper, M., van der Spek, H., Grivell, L., et al. (2003). Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biology, 4, R3. doi:10.1186/gb-2002-4-1-r3.

    Article  Google Scholar 

  24. Pflieger, D., Le Caer, J. P., Lemaire, C., Bernard, B. A., Dujardin, G., & Rossier, J. (2002). Systematic identification of mitochondrial proteins by LC-MS/MS. Analytical Chemistry, 74, 2400–2406. doi:10.1021/ac011295h.

    Article  CAS  Google Scholar 

  25. Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H. E., et al. (2003). The proteome of Saccharomyces cerevisiae mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 100, 13207–13212. doi:10.1073/pnas.2135385100.

    Article  CAS  Google Scholar 

  26. Ohlmeier, S., Kastaniotis, A. J., Hiltunen, J. K., & Bergmann, U. (2004). The yeast mitochondrial proteome, a study of fermentative and respiratory growth. The Journal of Biological Chemistry, 279, 3956–3979. doi:10.1074/jbc.M310160200.

    Article  CAS  Google Scholar 

  27. Zahedi, R. P., Sickmann, A., Boehm, A. M., Winkler, C., Zufall, N., Schönfisch, B., et al. (2006). Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Molecular Biology of the Cell, 17, 1436–1450. doi:10.1091/mbc.E05-08-0740.

    Article  CAS  Google Scholar 

  28. Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C., & Sickmann, A. (2006). Toward the complete yeast mitochondrial proteome: Multidimensional separation techniques for mitochondrial proteomics. Journal of Proteome Research, 5, 1543–1554. doi:10.1021/pr050477f.

    Article  CAS  Google Scholar 

  29. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., et al. (2003). Global analysis of protein expression in yeast. Nature, 425, 737–741. doi:10.1038/nature02046.

    Article  CAS  Google Scholar 

  30. Dimmer, K. S., Fritz, S., Fuchs, F., Messerschmitt, M., Weinbach, N., Neupert, W., et al. (2002). Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Molecular Biology of the Cell, 13, 847–853. doi:10.1091/mbc.01-12-0588.

    Article  CAS  Google Scholar 

  31. Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., et al. (2002). Systematic screen for human disease genes in yeast. Nature Genetics, 31, 400–404.

    CAS  Google Scholar 

  32. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 33, D514–D517. doi:10.1093/nar/gki033.

    Article  CAS  Google Scholar 

  33. Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E., Blake, J. A., & Mouse Genome Database Group. (2008). The Mouse Genome Database (MGD): Mouse biology and model systems. Nucleic Acids Research, 36, D724–D728. doi:10.1093/nar/gkm961.

  34. Schaefer, A. M., McFarland, R., Blakely, E. L., He, L., Whittaker, R. G., Taylor, R. W., et al. (2008). Prevalence of mitochondrial DNA disease in adults. Annals of Neurology, 63, 35–39. doi:10.1002/ana.21217.

    Article  CAS  Google Scholar 

  35. Gaucher, S. P., Taylor, S. W., Fahy, E., Zhang, B., Warnock, D. E., Ghosh, S. S., et al. (2004). Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. Journal of Proteome Research, 3, 495–505. doi:10.1021/pr034102a.

    Article  CAS  Google Scholar 

  36. Taylor, S. W., Fahy, E., Zhang, B., Glenn, G. M., Warnock, D. E., Wiley, S., et al. (2003). Characterization of the human heart mitochondrial proteome. Nature Biotechnology, 21, 281–286. doi:10.1038/nbt793.

    Article  CAS  Google Scholar 

  37. Devreese, B., Vanrobaeys, F., Smet, J., Van Beeumen, J., & Van Coster, R. (2002). Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis, 23, 2525–2533. doi :10.1002/1522-2683(200208)23:15<2525::AID-ELPS2525>3.0.CO;2-I.

    Article  CAS  Google Scholar 

  38. Calvo, S., Jain, M., Xie, X., Sheth, S. A., Chang, B., Goldberger, O. A., et al. (2006). Systematic identification of human mitochondrial disease genes through integrative genomics. Nature Genetics, 38, 576–582. doi:10.1038/ng1776.

    Article  CAS  Google Scholar 

  39. Lescuyer, P., Strub, J. M., Luche, S., Diemer, H., Martinez, P., Van Dorsselaer, A., et al. (2003). Progress in the definition of a reference human mitochondrial proteome. Proteomics, 3, 157–167. doi:10.1002/pmic.200390024.

    Article  CAS  Google Scholar 

  40. Xie, J., Techritz, S., Haebel, S., Horn, A., Neitzel, H., Klose, J., et al. (2005). A two-dimensional electrophoretic map of human mitochondrial proteins from immortalized lymphoblastoid cell lines: A prerequisite to study mitochondrial disorders in patients. Proteomics, 5, 2981–2999. doi:10.1002/pmic.200401191.

    Article  CAS  Google Scholar 

  41. Fountoulakis, M., & Schlaeger, E. J. (2003). The mitochondrial proteins of the neuroblastoma cell line IMR-32. Electrophoresis, 24, 260–275. doi:10.1002/elps.200390022.

    Article  CAS  Google Scholar 

  42. McDonald, T., Sheng, S., Stanley, B., Chen, D., Ko, Y., Cole, R. N., et al. (2006). Expanding the subproteome of the inner mitochondria using protein separation technologies: One- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Molecular & Cellular Proteomics, 5, 2392–2411. doi:10.1074/mcp.T500036-MCP200.

    Article  CAS  Google Scholar 

  43. Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., Parone, P. A., & Martinou, J. C. (2003). Proteomic analysis of the mouse liver mitochondrial inner membrane. The Journal of Biological Chemistry, 278, 41566–41571. doi:10.1074/jbc.M304940200.

    Article  CAS  Google Scholar 

  44. Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., et al. (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell, 115, 629–640. doi:10.1016/S0092-8674(03)00926-7.

    Article  CAS  Google Scholar 

  45. Jin, J., Davis, J., Zhu, D., Kashima, D. T., Leroueil, M., Pan, C., et al. (2007). Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neuroscience, 8, 67. doi:10.1186/1471-2202-8-67.

    Article  CAS  Google Scholar 

  46. Ozawa, T., Sako, Y., Sato, M., Kitamura, T., & Umezawa, Y. (2003). A genetic approach to identifying mitochondrial proteins. Nature Biotechnology, 21, 287–293. doi:10.1038/nbt791.

    Article  CAS  Google Scholar 

  47. Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell, 134, 112–123. doi:10.1016/j.cell.2008.06.016.

    Article  CAS  Google Scholar 

  48. Smeitink, J. A., Elpeleg, O., Antonicka, H., Diepstra, H., Saada, A., Smits, P., et al. (2006). Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. American Journal of Human Genetics, 79, 869–877. doi:10.1086/508434.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Prokisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elstner, M., Andreoli, C., Ahting, U. et al. MitoP2: An Integrative Tool for the Analysis of the Mitochondrial Proteome. Mol Biotechnol 40, 306–315 (2008). https://doi.org/10.1007/s12033-008-9100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9100-5

Keywords

Navigation