Skip to main content
Log in

A Method for Construction, Cloning and Expression of Intron-Less Gene from Unannotated Genomic DNA

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The present century has witnessed an unprecedented rise in genome sequences owing to various genome-sequencing programs. However, the same has not been replicated with cDNA or expressed sequence tags (ESTs). Hence, prediction of protein coding sequence of genes from this enormous collection of genomic sequences presents a significant challenge. While robust high throughput methods of cloning and expression could be used to meet protein requirements, lack of intron information creates a bottleneck. Computational programs designed for recognizing intron–exon boundaries for a particular organism or group of organisms have their own limitations. Keeping this in view, we describe here a method for construction of intron-less gene from genomic DNA in the absence of cDNA/EST information and organism-specific gene prediction program. The method outlined is a sequential application of bioinformatics to predict correct intron–exon boundaries and splicing by overlap extension PCR for spliced gene synthesis. The gene construct so obtained can then be cloned for protein expression. The method is simple and can be used for any eukaryotic gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solovyev, V., Kosarev, P., Seledsov, I., & Vorobyev, D. (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology, 7(Suppl 1), S10.1–S12.

    Google Scholar 

  2. Brent, M. R., & Guigo, R. (2004). Recent advances in gene structure prediction. Current Opinion in Structural Biology, 14, 264–272. doi:10.1016/j.sbi.2004.05.007.

    Article  CAS  Google Scholar 

  3. Makarov, M. (2002). Computer programs for eukaryotic gene prediction. Briefings in Bioinformatics, 3, 195–199. doi:10.1093/bib/3.2.195.

    Article  Google Scholar 

  4. Rogic, S., Ouellette, B. F., & Mackworth, A. K. (2002). Improving gene recognition accuracy by combining predictions from two gene-finding programs. Bioinformatics (Oxford, England), 18, 1034–1045. doi:10.1093/bioinformatics/18.8.1034.

    Article  CAS  Google Scholar 

  5. Vats, P., Sahoo, D. K., & Banerjee, U. C. (2004). Production of phytase (myo-inositolhexakisphosphate phosphohydrolase) by Aspergillus niger van Teighem in laboratory-scale fermenter. Biotechnology Progress, 20, 737–743. doi:10.1021/bp034095v.

    Article  CAS  Google Scholar 

  6. Howson, S. J., & Davis, R. P. (1983). Production of phytate-hydrolysing enzyme by some fungi. Enzyme and Microbial Technology, 5, 377–382. doi:10.1016/0141-0229(83)90012-1.

    Article  CAS  Google Scholar 

  7. Mullaney, E. J., Daly, C. B., & Ullah, A. H. (2000). Advances in phytase research. Advances in Applied Microbiology, 47, 157–199. doi:10.1016/S0065-2164(00)47004-8.

    Article  CAS  Google Scholar 

  8. Wodzinski, R. J., & Ullah, A. H. (1996). Phytase. Advances in Applied Microbiology, 42, 263–302. doi:10.1016/S0065-2164(08)70375-7.

    Article  CAS  Google Scholar 

  9. Lei, X. G., & Porres, J. M. (2003). Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 25, 1787–1794. doi:10.1023/A:1026224101580.

    Article  CAS  Google Scholar 

  10. Ullah, A. H. (1988). Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Preparative Biochemistry, 18, 443–458. doi:10.1080/00327488808062543.

    Article  CAS  Google Scholar 

  11. Kostrewa, D., Wyss, M., D’Arcy, A., & van Loon, A. P. (1999). Crystal structure of Aspergillus niger pH 25 acid phosphatase at 2 4 A resolution. Journal of Molecular Biology, 288, 965–974. doi:10.1006/jmbi.1999.2736.

    Article  CAS  Google Scholar 

  12. Li, X. L., & Ljungdahl, L. G. (1996). Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. Applied and Environmental Microbiology, 62, 209–213.

    CAS  Google Scholar 

  13. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., & Pease, L. R. (1989). Engineering hybrid genes without the use of restriction enzymes: Gene splicing by overlap extension. Gene, 77, 61–68. doi:10.1016/0378-1119(89)90359-4.

    Article  CAS  Google Scholar 

  14. Warrens, A. N., Jones, M. D., & Lechler, R. I. (1997). Splicing by overlap extension by PCR using asymmetric amplification: An improved technique for the generation of hybrid proteins of immunological interest. Gene, 186, 29–35. doi:10.1016/S0378-1119(96)00674-9.

    Article  CAS  Google Scholar 

  15. Burset, M., & Guigo, R. (1996). Evaluation of gene structure prediction programs. Genomics, 34, 353–367. doi:10.1006/geno.1996.0298.

    Article  CAS  Google Scholar 

  16. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51–59. doi:10.1016/0378-1119(89)90358-2.

    Article  CAS  Google Scholar 

  17. Kuwayama, H., Obara, S., Morio, T., Katoh, M., Urushihara, H., & Tanaka, Y. (2002). PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Research, 30, E2. doi:10.1093/nar/30.2.e2.

    Article  Google Scholar 

  18. Shevchuk, N. A., Bryksin, A. V., Nusinovich, Y. A., Cabello, F. C., Sutherland, M., & Ladisch, S. (2004). Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 32, e19. doi:10.1093/nar/gnh014.

    Article  CAS  Google Scholar 

  19. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M., et al. (2004). A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Research, 32, e98. doi:10.1093/nar/gnh094.

    Article  CAS  Google Scholar 

  20. Yolov, A. A., & Shabarova, Z. A. (1990). Constructing DNA by polymerase recombination. Nucleic Acids Research, 18, 3983–3986. doi:10.1093/nar/18.13.3983.

    Article  CAS  Google Scholar 

  21. Yon, J., & Fried, M. (1989). Precise gene fusion by PCR. Nucleic Acids Research, 17, 4895. doi:10.1093/nar/17.12.4895.

    Article  CAS  Google Scholar 

  22. Heinonen, J. K., & Lahti, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113, 313–317. doi:10.1016/0003-2697(81)90082-8.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  24. Mortz, E., Krogh, T. N., Vorum, H., & Gorg, A. (2001). Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics, 1, 1359–1363. doi:10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q.

  25. Hellman, U., Wernstedt, C., Gonez, J., & Heldin, C. H. (1995). Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Analytical Biochemistry, 224, 451–455. doi:10.1006/abio.1995.1070.

    Article  CAS  Google Scholar 

  26. Rosenfeld, J., Capdevielle, J., Guillemot, J. C., & Ferrara, P. (1992). In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical Biochemistry, 203, 173–179. doi:10.1016/0003-2697(92)90061-B.

    Article  CAS  Google Scholar 

  27. Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850–858. doi:10.1021/ac950914 h.

    Article  CAS  Google Scholar 

  28. Mount, D. W. (2005). Bioinformatics sequence and genome analysis. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  29. Allen, J. E., Pertea, M., & Salzberg, S. L. (2004). Computational gene prediction using multiple sources of evidence. Genome Research, 14, 142–148. doi:10.1101/gr.1562804.

    Article  CAS  Google Scholar 

  30. Murakami, K., & Takagi, T. (1998). Gene recognition by combination of several gene-finding programs. Bioinformatics (Oxford, England), 14, 665–675. doi:10.1093/bioinformatics/14.8.665.

    Article  CAS  Google Scholar 

  31. Pavlovic, V., Garg, A., & Kasif, S. (2002). A Bayesian framework for combining gene predictions. Bioinformatics (Oxford, England), 18, 19–27. doi:10.1093/bioinformatics/18.1.19.

    Article  CAS  Google Scholar 

  32. Baker, S. E. (2006). Aspergillus niger genomics: Past, present and into the future. Medical Mycology, 44(Suppl 1), S17–S21. doi:10.1080/13693780600921037.

    Article  CAS  Google Scholar 

  33. Semova, N., Storms, R., John, T., Gaudet, P., Ulycznyj, P., Min, X. J., et al. (2006). Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiology, 6, 7. doi:10.1186/1471-2180-6-7.

    Article  CAS  Google Scholar 

  34. Wilihoeft, U., Campos-Gongora, E., Touzni, S., Bruchhaus, I., & Tannich, E. (2001). Introns of Entamoeba histolytica and Entamoeba dispar. Protist, 152, 149–156. doi:10.1078/1434-4610-00053.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

V.A. is a recipient of Senior Research Fellowship from Council of Scientific and Industrial Research (CSIR) New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, V., Gupta, B., Banerjee, U.C. et al. A Method for Construction, Cloning and Expression of Intron-Less Gene from Unannotated Genomic DNA. Mol Biotechnol 40, 217–223 (2008). https://doi.org/10.1007/s12033-008-9076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9076-1

Keywords

Navigation