Skip to main content
Log in

Influence of a Reduced CO2 Environment on the Secretion Yield, Potency and N-Glycan Structures of Recombinant Thyrotropin from CHO Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A consistent increase of ∼60% in the secretion yield of CHO-derived hTSH was observed by changing cell culture CO2 conditions from 5% CO2 to an air environment. The overall quality of the products obtained under both conditions was evaluated in comparison with a well-known biopharmaceutical (Thyrogen®). The N-glycans identified were of the complex type, presenting di-, tri- and tetra-antennary structures, sometimes fucosylated, 86–88% of the identified structures being sialylated at variable levels. The three most abundant structures were monosialylated glycans, representing ∼69% of all identified forms in the three preparations. The main difference was found in terms of antennarity, with 8–10% more di-antennary structures obtained in the absence of CO2 and 7–9% more tri-antennary structures in its presence. No remarkable difference in charge isomers was observed between the three preparations, the isoelectric focusing profiles showing six distinct bands in the 5.39–7.35 pI range. A considerably different distribution, with more forms in the acidic region, was observed, however, for two native pituitary preparations. All recombinant preparations showed a higher in vivo bioactivity when compared to native hTSH. Different production processes apparently do not greatly affect N-glycan structures, charge isomer distribution or bioactivity of CHO-derived hTSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoon, S. K., Kim, S. H, Song, J. Y., & Lee, G. M. (2006). Biphasic culture strategy for enhancing volumetric erythropoietin productivity of Chinese hamster ovary cells. Enzyme and Microbial Technology, 39, 362–365.

    Article  CAS  Google Scholar 

  2. Bollati-Fogolin, M., Forno, G, Nimtz, M., Conradt, H. S., Etcheverrigaray, M., & Kratje, R. (2005). Temperature reduction in cultures of hGM-CSF-expressing CHO cells: Effect on productivity and product quality. Biotechnology Progress, 21, 17–21.

    Article  PubMed  CAS  Google Scholar 

  3. Shi, M., Xie, Z., Yu, M., Shen, B., & Guo, N. (2005). Controlled growth of Chinese hamster ovary cells and high expression of antibody-IL-2 fusion proteins by temperature manipulation. Biotechnology Letters, 27, 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  4. Fox, S. R., Patel, U. A., Yap, M. G. S., & Wang, D. I. C. (2004). Maximizing interferon-γ production by Chinese hamster ovary cells through temperature shift optimization: Experimental and modeling. Biotechnology and Bioengineering, 85, 177–184.

    Article  PubMed  CAS  Google Scholar 

  5. Schatz, S. M., Kerschbaumer, R. J., Gerstenbauer, G., Kral, M., Dorner, F., & Scheiflinger, F. (2003). Higher expression of Fab antibody fragments in a CHU cell line at reduced temperature. Biotechnology and Bioengineering, 84, 433–438.

    Article  PubMed  CAS  Google Scholar 

  6. Trummer, E., Fauland, K., Seidinger, S., Schriebl, K., Lattenmayer, C., Kunert, R., Vorauer-Uhl, K., Weik, R., Borth, N., Katinger, H., & Müller, D. (2006). Process parameter shifting. Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnology and Bioengineering, 94, 1033–1044.

    Article  PubMed  CAS  Google Scholar 

  7. Trummer, E., Fauland, K., Seidinger, S., Schriebl, K., Lattenmayer, C., Kunert, R., Vorauer-Uhl, K., Weik, R., Borth, N., Katinger, H., & Müller, D. (2006). Process parameter shifting. Part II. Biphasic cultivation—A tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnology and Bioengineering, 94, 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, M. M., Goyal, A., Rank, D. L., Gupta, S. K., Boom, T. V., & Lee, S. S. (2005). Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: A case study. Biotechnology Progress, 21, 70–77.

    Article  PubMed  CAS  Google Scholar 

  9. Yoon, S. K., Ahn, Y., & Han, K. (2001). Enhancement of recombinant erythropoietin production in CHO cells in an incubator without CO2 addition. Cytotechnology, 37, 119–132.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, P., & Harcum, S. W. (2005). Effects of amino acid additions on ammonium stressed CHO cells. Journal of Biotechnology, 117, 277–286.

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez, J., Spearman, M., Huzel, N., & Butler, M. (2005). Enhanced production of monomeric interferon-β by CHO cells through the control of culture conditions. Biotechnology Progress, 21, 22–30.

    Article  PubMed  CAS  Google Scholar 

  12. Sung, Y. H., & Lee, G. M. (2005). Enhanced human thrombopoietin production by sodium butyrate addition to serum-free suspension culture of Bcl-2-overexpressing CHO cells. Biotechnology Progress, 21, 50–57.

    Article  PubMed  CAS  Google Scholar 

  13. Yoon, S. K., Hong, J. K., & Lee, G. M. (2004). Effect of simultaneous application of stressful culture conditions on specific productivity and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnology Progress, 20, 1293–1296.

    Article  PubMed  CAS  Google Scholar 

  14. Luster, M. (2006). Present status of the use of recombinant human TSH in thyroid cancer management. Acta Oncologica, 45, 1018–1030.

    Article  PubMed  CAS  Google Scholar 

  15. Szkudlinski, M. W., Fremont, V., Ronin, C., & Weintraub, B. D. (2002). Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure–function relationships. Physiological Reviews, 82, 473–502.

    PubMed  CAS  Google Scholar 

  16. Butler, M. (2005). Animal cell cultures: Recent achievements and perspectives in the production of biopharmaceuticals. Applied Microbiology and Biotechnology, 68, 283–291.

    Article  PubMed  CAS  Google Scholar 

  17. Butler, M. (2006). Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology 50, 57–76.

    Article  CAS  PubMed  Google Scholar 

  18. Andersen, D. C., & Krummen, L. (2002). Recombinant protein expression for therapeutic applications. Current Opinion in Biotechnology, 13, 117–123.

    Article  PubMed  CAS  Google Scholar 

  19. Goochee, C. F., Gramer, M. J., Andersen, D. C., Bahr, J. B., & Rasmussen, J. R. (1991). The oligosaccharides of glycoproteins—Bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio-Technology, 9, 1347–1355.

    PubMed  CAS  Google Scholar 

  20. Hartree, A. S., & Renwick, A. G. C. (1992). Molecular structures of glycoprotein hormones and functions of their carbohydrate components. Biochemical Journal, 287, 665–679.

    Google Scholar 

  21. Thotakura, N. R., Desai, R. K., Bates, L. G., Cole, E. S., Pratt, B. M., & Weintraub, B. D. (1991). Biological-activity and metabolic-clearance of a recombinant human thyrotropin produced in Chinese-hamster ovary cells. Endocrinology, 128, 341–348.

    Article  PubMed  CAS  Google Scholar 

  22. Thotakura, N. R., & Blithe, D. L. (1995). Glycoprotein hormones—Glycobiology of gonadotropins, thyrotropin and free alpha-subunit. Glycobiology, 5, 3–10.

    Article  PubMed  CAS  Google Scholar 

  23. Szkudlinski, M. W., Thotakura, N. R., Bucci, I., Joshi, L. R., Tsai, A., East-Palmer, J., Shiloach, J., & Weintraub, B. D. (1993). Purification and characterization of recombinant human thyrotropin (TSH) isoforms produced by Chinese-hamster ovary cells—The role of sialylation and sulfation in TSH bioactivity. Endocrinology, 133, 1490–1503.

    Article  PubMed  CAS  Google Scholar 

  24. Szkudlinski, M. W., Grossmann, M., Leitolf, H., & Weintraub, B. D. (2000). Human thyroid-stimulating hormone: Structure–function analysis. Methods, 21, 67–81.

    Article  PubMed  CAS  Google Scholar 

  25. Grossmann, M., Wong, R., Tech, N. G., Tropea, J. E., East-Palmer, J., Weintraub, B. D., & Szkudlinski, M. W. (1997). Expression of biologically active human thyrotropin (hTSH) in a baculovirus system: Effect of insect cell glycosylation on hTSH activity in vitro and in vivo. Endocrinology, 138, 92–100.

    Article  PubMed  CAS  Google Scholar 

  26. Canonne, C., Papandreou, M. J., Medri, G., Varrier, B., & Ronin, C. (1995). Biological and immunochemical characterization of recombinant human thyrotropin. Glycobiology, 5, 473–481.

    Article  PubMed  CAS  Google Scholar 

  27. Green, E. D., & Baenziger, J. U. (1988). Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. Journal of Biological Chemistry, 263, 25–28.

    PubMed  CAS  Google Scholar 

  28. Hiyama, J., Weisshaar, G., & Renwick, A. G. C. (1992). The asparagine-linked oligosaccharides at individual glycosylation sites in human thyrotrophin. Glycobiology, 2, 401–409.

    Article  PubMed  CAS  Google Scholar 

  29. Morelle, W., Donadio, S., Ronin, C., & Michalski, J. (2006). Characterization of N-glycans of recombinant human thyrotropin using mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 331–345.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou, Q., Park, S.-H., Boucher, S., Higgins, E., Lee, K., & Edmunds, T. (2004). N-linked oligosaccharide analysis of glycoprotein bands from isoelectric focusing gels. Analytical Biochemistry, 335, 10–16.

    Article  PubMed  CAS  Google Scholar 

  31. Cole, E. S., Lee, K., Lauziera, K., Kelton, C., Chappel, S., Weintraub, B., Ferrara, D., Peterson, P., Bernasconi, R., & Edmunds, T. (1993). Recombinant human thyroid-stimulating hormone—Development of a biotechnology product for detection of metastatic lesions of thyroid-carcinoma. Bio-Technology, 11, 1014–1024.

    PubMed  CAS  Google Scholar 

  32. Peroni, C. N., Soares, C. R. J., Gimbo, E., Morganti, L., Ribela, M. T. C. P., & Bartolini, P. (2002). High-level expression of human thyroid-stimulating hormone in Chinese hamster ovary cells by co-transfection of dicistronic expression vectors followed by a dual-marker amplification strategy. Biotechnology and Applied Biochemistry, 35, 19–26.

    Article  PubMed  CAS  Google Scholar 

  33. Mendonça, F., Oliveira, J. E., Bartolini, P., & Ribela, M. T. C. P. (2005). Two-step chromatographic purification of recombinant human thyrotrophin and its immunological, biological, physico-chemical and mass spectral characterization. Journal of Chromatography A, 1062, 103–112.

    Article  PubMed  CAS  Google Scholar 

  34. Oliveira, J. E., Damiani, R., Bartolini, P., & Ribela, M. T. C. P. (2007). Practical reversed-phase high-performance liquid chromatography method for laboratory-scale purification of recombinant human thyrotropin. Journal of Chromatography A, 1164, 206–211.

    Article  PubMed  CAS  Google Scholar 

  35. Ribela, M. T. C. P., Bianco, A. C., & Bartolini, P. (1996). The use of recombinant human thyrotropin produced by Chinese hamster ovary cells for the preparation of immunoassay reagents. Journal of Clinical Endocrinology and Metabolism, 81, 249–256.

    Article  PubMed  CAS  Google Scholar 

  36. Schriebl, K., Trummer, E., Lattenmayer, C., Weik, R., Kunert, R., Muller, D., Katinger, H., & Vorauer-Uhl, K. (2006). Biochemical characterization of rhEpo-Fc fusion protein expressed in CHO cells. Protein Expression and Purification, 49, 265–275.

    Article  PubMed  CAS  Google Scholar 

  37. East-Palmer, J., Szkudlinski, M. W., Lee, J., Thotakura, N. R., & Weintraub, B. D. (1995). A novel nonradioactive in vivo bioassay of thyrotropin (TSH). Thyroid, 5, 55–59.

    Article  PubMed  CAS  Google Scholar 

  38. Oliveira, J. E., Mendonça, F., Peroni, C. N., Bartolini, P., & Ribela, M. T. C. P. (2003). Determination of Chinese hamster ovary cell-derived recombinant thyrotropin by reversed-phase liquid chromatography. Journal of Chromatography B, 787, 345–355.

    Article  CAS  Google Scholar 

  39. Loumaye, E., Dreano, M., Galazka, A., Howles, C., Ham, L., Munafo, A., Eshkol, A., Giudice, E., Luca, E., Sirna, A., Antonetti, F., Giartosio, C. E., Scaglia, L., Kelton, C., Campbell, R., Chappel, S., Duthu, B., Cymbalista, S., & Lepage, P. (1998). Recombinant follicle stimulating hormone: Development of the first biotechnology product for the treatment of infertility. Human Reproduction Update, 4, 862–881.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP, São Paulo, Brazil (03/11023-0 and 04/08904-7) and by the National Research Council (CNPq), Brasilia, Brazil (PQ 305108/2005-0 and PQ 301103/2006-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa C. P. Ribela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, J.E., Damiani, R., Vorauer-Uhl, K. et al. Influence of a Reduced CO2 Environment on the Secretion Yield, Potency and N-Glycan Structures of Recombinant Thyrotropin from CHO Cells. Mol Biotechnol 39, 159–166 (2008). https://doi.org/10.1007/s12033-008-9047-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9047-6

Keywords

Navigation