Skip to main content

Advertisement

Log in

The use of isobaric tag peptide labeling (iTRAQ) and mass spectrometry to examine rare, primitive hematopoietic cells from patients with chronic myeloid leukemia

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell disease, associated with a t(9, 22) chromosomal translocation leading to formation of the BCR/ABL chimeric protein, which has an intrinsic tyrosine kinase activity. Recently, the BCR/ABL tyrosine kinase inhibitor imatinib mesylate (imatinib) has been successfully used clinically, although, disease relapse can still occur. The precise detail of the mechanism by which CML cells respond to imatinib is still unclear. We therefore systematically examined the effects of imatinib on the primitive CML cell proteome, having first established that the drug inhibits proliferation and induces increased apoptosis and differentiation. To define imatinib-induced effects on the CML proteome, we employed isobaric tag peptide labeling (iTRAQ) coupled to two-dimensional liquid chromatography/tandem mass spectrometry. Given the limited clinical material available, the isobaric tag approach identified a large population of proteins and provided relative quantification on four samples at once. Novel consequences of the action of imatinib were identified using this mass spectrometric approach. DEAD-box protein 3, heat shock protein 105 kDa, and peroxiredoxin-3 were identified as potential protein markers for response to imatinib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sattler, M., & Griffin, J. D. (2001). Mechanisms of transformation by the BCR/ABL oncogene. International journal of hematology, 73, 278–291.

    Article  PubMed  CAS  Google Scholar 

  2. Melo, J. V. (1997). BCR/ABL gene variants. Baillieres Clinical Haematology, 10, 203–222.

    Article  CAS  Google Scholar 

  3. Takahashi, N., Miura, I., Saitah, K., & Miura, A. B. (1998). Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukaemia in the chronic phase as shown by the combination of fluorescent-activated cell sorting and fluorescent in situ hybridisation. Blood, 92, 4758–4763.

    PubMed  CAS  Google Scholar 

  4. Haferlach, T., Winkermann, M., Nickenig, C., Meeder, M., Ramm-Petersen, L., Schoch, R., Nickelsen, M., Weber-Matthiesen, K., Schlegelberger, B., Schoch, C., Gassmann, W., & Loffler, H. (1997). Which compartments are involved in Philadelphia-chromosome positive chronic myeloid leukaemia? An answer at the single cell level by combining May-Grunwald-Giemsa staining and fluorescence in situ hybridization techniques. British journal of haematology, 97, 99–106.

    Article  PubMed  CAS  Google Scholar 

  5. Ogawa, M., Fried, J., Sakai, Y., Strife, A., & Clarkson, B. D. (1970). Studies of cellular proliferation in human leukaemia. VI. The proliferative activity, generation time, and emergence time of neutrophilic granulocytes in chronic granulocytic leukaemia. Cancer, 25, 1031–1049.

    Article  PubMed  CAS  Google Scholar 

  6. Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. & Lydon, N. B. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature medicine, 2, 561–566.

    Article  PubMed  CAS  Google Scholar 

  7. Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., & Zigler, A. J. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI571, a selective tyrosine kinase inhibitor. Blood, 96, 925–932

    PubMed  CAS  Google Scholar 

  8. Buchdunger, E., Cioffi, C. L., Law, N., Stover, D., Ohno-Jones, S., Druker, B. J., & Lydon, N. B. (2000). Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. The Journal of pharmacology and experimental therapeutics, 295, 139–145.

    PubMed  CAS  Google Scholar 

  9. O’Brien, S. G., Guilhot, F., Larson, R. A., Gathmann, I., Baccarani, M., Cervantes, F., Cornelissen, J. J., Fischer, T., Hochhaus, A., Hughes, T., Lechner, K., Nielsen, J. L., Rousselot, P., Reiffers, J., Saglio, G., Shepherd, J., Simonsson, B., Gratwohl, A., Goldman, J. M., Kantarjian, H., Taylor, K., Verhoef, G., Bolton, A. E., Capdeville, R., & Druker, B. J. (2003). Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukaemia. The New England journal of medicine , 348, 994–1004.

    Article  PubMed  CAS  Google Scholar 

  10. Oehler, V. G., Gooley, T., Snyder, D. S., Johnston, L., Lin A., Cummings, C. C., Chu, S., Bhatia, R., Forman, S. J., Negrin, R. S., Appelbaum, F. R., & Radich, J. P. (2007). The effects of imatinib mesylate treatment before allogeneic transplant for chronic myeloid leukaemia. Blood, 109, 1782–1789.

    Article  PubMed  CAS  Google Scholar 

  11. Hughes, T. P., Kaeda, J., Branford, S., Rudzski, Z., Hochhaus, A., Hensley, M. L., Gathmann, I., Bolton, A. E., van Hoomissen, I. C., Goldman, J. M., & Radich, J. P. (2003). Frequency of major molecular response to imatinib or interferon-alpha plus cytarabine in newly diagnosed chronic myeloid leukaemia. The New England journal of medicine, 349, 1423–1432.

    Article  PubMed  CAS  Google Scholar 

  12. Lin, F., Drummond, M., O’Brien, S., Cervantes, F., Goldman, J. & Kaeda, J. (2003). Molecular monitoring in chronic myloid leukemis patients who achieve complete cytogenetic remission on imatinib. Blood, 102, 1143.

    Article  PubMed  CAS  Google Scholar 

  13. Bhatia, R., Holtz, M., Niu, N., Gray, R., Sneyder, D. S., Sawers, C. L., Arber, D. A., Slovak, M. L., & Forman, S. J. (2003). Persistence of malignant hematopoietic progenitors in chronic myelogenous leukaemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 101, 4701–4707.

    Article  PubMed  CAS  Google Scholar 

  14. O’Brien, S. G., & Rule, S. A. (2002). Position paper on imatinib mesylate in chronic myeloid leukaemia. British journal of haematology, 119, 268–272.

    Article  PubMed  Google Scholar 

  15. Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405, 837–846.

    Article  PubMed  CAS  Google Scholar 

  16. Rappsilber, J., & Mann, M. (2002). What does it mean to identify a protein in proteomics? Trends in biochemical sciences, 27, 74–78.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, J. C. Y., & Dick, J. E. (2005). Cancer stem cells: lessons from leukaemia. Trends in cell biology , 15, 494–501.

    Article  PubMed  CAS  Google Scholar 

  18. Marley, S. B. & Gordon, M. Y. (2005). Chronic myeloid leukaemia: stem cell derived but progenitor cell driven. Clinical Science, 109, 13–25.

    PubMed  CAS  Google Scholar 

  19. Zou L., Wu, Y., Pei, L., Zhong, D., Gen, M., Zhao, T., Wu, J., Ni, B., Mou, Z., Han, J., Chen, Y., & Zhi, Y. (2005). Identification of leukaemia-associated antigens in chronic myeloid leukaemia by proteomic analysis. Leukemia research, 29, 1387–1391.

    Article  PubMed  CAS  Google Scholar 

  20. Hegedus, C. M., Gunn, L., Skibola, C. F., Zhang, L., Shiao, R., Fu, S., Dalmasso E. A., Metayer, C., Dahl, G. V., Buffler, P. A., & Smith, M. T. (2005). Proteomic analysis of childhood leukaemia. Leukemia, 19, 1713–1718.

    Article  PubMed  CAS  Google Scholar 

  21. Abramovitz, M., & Leyland-Jones, B. R. (2006). A systems approach to clinical oncology: Focus on breast cancer. Proteome science, 4:5, 1–15.

  22. Unwin, R. D., Smith, D. L., Blinco, D., Wilson, C. L., Miller, C. J., Evans, C. A., Jaworska, E., Baldwin, S. A., Barnes, K., Pierce, A., Spooncer, E., & Whetton, A. D. (2006). Quantitative proteomics reveals post-translational control as a regulatory factor in primary hematopoietic stem cells. Blood, 107, 4687–4694.

    Article  PubMed  CAS  Google Scholar 

  23. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., & Pappin, D. J. (2004). Multiplexed protein quantification in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics, 3, 1154–1169.

    Article  CAS  Google Scholar 

  24. Graham, S. M., Jorgenson, H. G., Allan, E., Pearson, C., Alcorn, M. J., Richmond, L., & Holyoake, T. L. (2002). Primitive, quiescent Philadelphia positive stem cells from patients with chronic myeloid leukaemia are insensitive to STI571 in vitro. Blood, 99, 319–325.

    Article  PubMed  CAS  Google Scholar 

  25. Unwin, R. D., Pierce, A., Watson, R. B., Sternberg, D. W., & Whetton, A. D. (2005). Quantitative proteomic analysis using isobaric protein tags enables rapid comparisons of changes in transcript and protein levels in transformed cells. Molecular & cellular proteomics, 4, 924–935.

    Article  CAS  Google Scholar 

  26. Hancock, W. S., Wu, S. -L., & Shieh, P. (2002). The challenges of developing a sound proteomics strategy. Proteomics, 2, 352–359.

    Article  PubMed  CAS  Google Scholar 

  27. Copland, M., Hamilton, A., Elrick, L. J., Baird, J. W., Allan, E. K., Jordanides, N., Barrow, M., Mountford, J. C., & Holyoake, T. L. (2006). Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood, 107, 4532–4539.

    Article  PubMed  CAS  Google Scholar 

  28. Gambascorti-Passerini, C., le Courte, P., Mologni, L., Fanelli, M., Bertazzoli, C., Marchesi, E., Di Nichola, M., Biondi, A., Corneo, G. M., Belotti, D., Pogliani, E., & Lydon, N. B. (1997). Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood cells, molecules & diseases, 23, 380–394.

    Article  Google Scholar 

  29. Kramer, A., Loffler, H., Bergmann, J., Hochhaus, A., & Hehlmann, R. (2001). proliferating status of peripheral blood progenitor cells from patients with BCR/ABL-positive chronic myelogenous leukaemia. Leukaemia, 15, 62–68.

    Article  CAS  Google Scholar 

  30. Holtz, M. S., Slovak, M. L., Zhang, F., Sawers, C. L., Forman, S. J., & Bhatia, R. (2002). Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukaemia through reversal of abnormally increased roliferation. Blood, 99, 3792–3800.

    Article  PubMed  CAS  Google Scholar 

  31. Vigneri, P., & Wang, J. Y. (2001). Introduction of apoptosis in chronic myelogenous leukaemia cells through nuclear entrapment of BCR/ABL tyrosine kinase. Nature medicine, 7, 228–234.

    Article  PubMed  CAS  Google Scholar 

  32. Fang, G., Kim, C. N., Perkins, C. L., Ramadevi, N., Winton, E., Wittmann, S., & Bhalla, K. N. (2000). CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl positive human leukaemia cells to apoptosis due to antileukemic drugs. Blood, 96, 2246–2253.

    PubMed  CAS  Google Scholar 

  33. Lilley, K. S. & Friedman, D. B. (2004). All about DIGE: Quantification technology for differential-display 2D-gel proteomics. Expert review of proteomics, 1, 401–409.

    Article  PubMed  CAS  Google Scholar 

  34. DeSouza, L., Diehl, G., Rodrigues, M. J., Guo, J., Romaschin, A. D., Colgan, T. J., & Siu, K. W. (2005). Search for cancer markers from endometrial tissues using differentially labelled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. Journal of proteome research, 4, 377–386.

    Article  PubMed  CAS  Google Scholar 

  35. Listgarten, J., & Emili, A. (2005). Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Molecular & cellular proteomics, 4, 419–434.

    Article  CAS  Google Scholar 

  36. Jongen-Lavrencic, M., Salesse, S., Delwel, R., & Verfaillie, C. M. (2005). BCR/ABL-mediated down regulation of genes implicated in cell adhesion and motility leads to impaired migration toward CCR7 ligands CC19 and CCL21 in primary BCR/ABL-positive cells. Leukemia, 3, 373–380.

    Article  CAS  Google Scholar 

  37. Villuendas, R., Steegmann, J. L., Pollan, M., Tracey, L., Granda, A., Fernandez-Ruiz, E., Lombardia, L., Villalon, L., Odriozola, J., & Piris, M.A. (2006). Identification of genes involved in imatinib resistance in CML: A gene expression profiling approach. Leukemia, 20, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  38. Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature reviews. Cancer, 3, 172–183.

    Article  CAS  Google Scholar 

  39. Rocak, S., & Linder, P. (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nature reviews. Molecular cell biology, 5, 232–239.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou, Z., Licklider, L. J., Gygi, S.P., & Reed, R. (2002). Comprehensive proteomic analysis of the human spliceosome. Nature, 419, 182–185.

    Article  PubMed  CAS  Google Scholar 

  41. Chao, C. -H., Chen, C. -M., Cheng, P. -L., Shih, J. -W., Tsou, A. -P., & Wu Lee, Y. -H. (2006). DDX3, a dead box RNA helicase with tumour growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1promoter, is a candidate tumour suppressor. Cancer research, 66, 6579–6588.

    Article  PubMed  CAS  Google Scholar 

  42. Hatayama, T., Yamagishi, N., Minobe, E., & Sakai, K. (2001). Role of hsp105 in protection against stress-induced apoptosis in neuronal PC12 Cells. Biochemical and biophysical research communications, 288, 528–534.

    Article  PubMed  CAS  Google Scholar 

  43. Ray, S., Lu, Y., Kaufmann, S. H., Gustafson, W. C., Karp, J. E., Boldogh, I., Fields, A. P., & Brasier, A. R. (2004). Genomic mechanisms of p210BCR-ABL signalling: Induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. The Journal of biological chemistry, 279, 35604–35615.

    Article  PubMed  CAS  Google Scholar 

  44. Guo, F., Sigua, C., Bali, P., George, P., Fiskus, W., Scuto, A., Annavarapu, S., Mouttaki, A., Sondarva, G., Wei, S., Wu, J., Djeu, J., & Bhalla, K. (2005). Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukaemia cells. Blood, 105, 1246–1255.

    Article  PubMed  CAS  Google Scholar 

  45. Chang, T. -S., Cho, C. -S., Park, S., Yu, S., Kang, S. W., & Rhee, G. (2004). Periredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signalling by mitochondria. The Journal of biological chemistry, 279, 41975–41984.

    Article  PubMed  CAS  Google Scholar 

  46. Jackson, A. L., & Loeb, L. A. (2001). The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutation research, 477, 7–21.

    PubMed  CAS  Google Scholar 

  47. Sattler, M., Verma, S., Shrikhande, G., Byrne, C. H., Pride, Y. B., Winkler, T., Greenfield, E. A., Salgia, R., & Griffin, J. D. (2000). The Bcr-Abl tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. The Journal of biological chemistry, 275, 24273–24278.

    Article  PubMed  CAS  Google Scholar 

  48. Kim, J. H., Chu, S. C., Gramlich, J. L., Pride, Y. B., Babendreier, E., Chauhan, D., Salgia, R., Podar, K., Griffin, J. D., & Sattler, M. (2005). Activation of the PI3 K/mTOR pathway by BCR-ABL contributes to increased production reactive oxygen species. Blood, 105, 1717–1723.

    Article  PubMed  CAS  Google Scholar 

  49. Koptyra, M., Falinski, R., Nowicki, M. O., Stoklosa, T., Majsterek, I., Nieborowska-Skorska, M., Blasiak, J., & Skorski, T. (2006). BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood, 108, 319–327.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony D. Whetton.

Additional information

Stephen D. Griffiths and John Burthem contributed equally to this publication. This work is supported by The Leukaemia Research Fund (UK).

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1(XLS 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, S.D., Burthem, J., Unwin, R.D. et al. The use of isobaric tag peptide labeling (iTRAQ) and mass spectrometry to examine rare, primitive hematopoietic cells from patients with chronic myeloid leukemia. Mol Biotechnol 36, 81–89 (2007). https://doi.org/10.1007/s12033-007-0005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0005-5

Keywords

Navigation