Skip to main content

Advertisement

Log in

Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over time. Exosomes, extracellular vesicles with a 30–150 nm diameter, have emerged as vital mediators of intercellular communication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resistance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical benefits to patients with EGFR-mutated NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Suster DI, et al. Molecular pathology of primary non-small cell lung cancer. Arch Med Res. 2020;51(8):784–98.

    Article  CAS  PubMed  Google Scholar 

  3. Jorge SEDC, et al. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data. Braz J Med Biol Res. 2014;47(11):929–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rosell R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  5. Sullivan I, et al. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience. Ther Adv Respir Dis. 2016;10(6):549–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lim SM, et al. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic strategies. Cancer Treat Rev. 2018;65:1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Remon J, et al. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol. 2018;29(1):20–7.

    Article  Google Scholar 

  8. Chmielecki J, et al. Candidate mechanisms of acquired resistance to first-line osimertinib in EGFR-mutated advanced non-small cell lung cancer. Nat Commun. 2023;14(1):1070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen J, et al. Tumor-derived extracellular vesicles: Regulators of tumor microenvironment and the enlightenment in tumor therapy. Pharmacol Res. 2020;159: 105041.

    Article  CAS  PubMed  Google Scholar 

  10. Steinbichler TB, et al. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.

    Article  CAS  PubMed  Google Scholar 

  11. Wu S, et al. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Mol Cancer. 2021;20(1):17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ishola AA, et al. Non-coding RNA and lung cancer progression. J Chin Med Assoc. 2020;83(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  13. Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yang B, et al. Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging (Albany NY). 2021;13(9):13264–86.

    Article  CAS  PubMed  Google Scholar 

  15. Jing C, et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 2018;15(6):9811–7.

    PubMed Central  PubMed  Google Scholar 

  16. Zhou D, et al. Exosomal long non-coding RNA SOX2 overlapping transcript enhances the resistance to EGFR-TKIs in non-small cell lung cancer cell line H1975. Hum Cell. 2021;34(5):1478–89.

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, et al. Circular RNAs: the star molecules in cancer. Mol Aspects Med. 2019;70:141–52.

    Article  CAS  PubMed  Google Scholar 

  18. Liu W, et al. Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochem Biophys Res Commun. 2018;500(4):846–51.

    Article  CAS  PubMed  Google Scholar 

  19. Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.

    Article  CAS  PubMed  Google Scholar 

  20. Han W, et al. Circular RNA circ-RAD23B promotes cell growth and invasion by miR-593-3p/CCND2 and miR-653-5p/TIAM1 pathways in non-small cell lung cancer. Biochem Biophys Res Commun. 2019;510(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ma S, et al. CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Mol Cancer. 2020;19(1):119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Świtlik W, et al. miR-30a-5p together with miR-210-3p as a promising biomarker for non-small cell lung cancer: a preliminary study. Cancer Biomark. 2018;21(2):479–88.

    Article  PubMed  Google Scholar 

  23. Karvonen H, et al. Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting. Oncogene. 2019;38(17):3288–300.

    Article  CAS  PubMed  Google Scholar 

  24. Miyake N, et al. Targeting ROR1 in combination with pemetrexed in malignant mesothelioma cells. Lung Cancer. 2020;139:170–8.

    Article  PubMed  Google Scholar 

  25. Wang F, et al. Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer. Ther Adv Respir Dis. 2020;14:1–18.

    Article  Google Scholar 

  26. Yan J, et al. MicroRNA-30a-5p suppresses epithelial-mesenchymal transition by targeting profilin-2 in high invasive non-small cell lung cancer cell lines. Oncol Rep. 2017;37(5):3146–54.

    Article  CAS  PubMed  Google Scholar 

  27. Ghaderi A, et al. A small molecule targeting the intracellular tyrosine kinase domain of ROR1 (KAN0441571C) induced significant apoptosis of non-small cell lung cancer (NSCLC) cells. Pharmaceutics. 2023;15(4):1148–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu X, et al. Novel ROR1 inhibitor ARI-1 suppresses the development of non-small cell lung cancer. Cancer Lett. 2019;458:76–85.

    Article  CAS  PubMed  Google Scholar 

  29. Long MP, et al. Targeting ROR1 inhibits epithelial to mesenchymal transition in human lung adenocarcinoma via mTOR signaling pathway. Int J Clin Exp Pathol. 2018;11(10):4759–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hill M, et al. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):dmm047662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lu TX, et al. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7.

    Article  CAS  PubMed  Google Scholar 

  32. Li B, et al. Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. Faseb j. 2021;35(10):e21916–27.

    Article  CAS  PubMed  Google Scholar 

  33. Steinbichler TB, et al. Therapy resistance mediated by exosomes. Mol Cancer. 2019;18(1):58–68.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Li X, et al. Elevated exosome-derived miRNAs predict osimertinib resistance in non-small cell lung cancer. Cancer Cell Int. 2021;21(1):428–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Azuma Y, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today. 2020;50(9):1099–106.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, et al. Exosomal transfer of miR-214 mediates gefitinib resistance in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;507(1–4):457–64.

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, et al. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J Cell Mol Med. 2020;24(2):1529–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hisakane K, et al. Exosome-derived miR-210 involved in resistance to osimertinib and epithelial-mesenchymal transition in EGFR mutant non-small cell lung cancer cells. Thorac Cancer. 2021;12(11):1690–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Guanen Q, et al. MiR-214 promotes cell meastasis and inhibites apoptosis of esophageal squamous cell carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother. 2018;105:350–61.

    Article  PubMed  Google Scholar 

  40. Wang YS, et al. MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev. 2012;13(1):255–60.

    Article  PubMed  Google Scholar 

  41. Liao J, et al. Down-regulation of miR-214 reverses erlotinib resistance in non-small-cell lung cancer through up-regulating LHX6 expression. Sci Rep. 2017;7(1):781–90.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wang Q, et al. LHX6 affects erlotinib resistance and migration of EGFR-mutant non-small-cell lung cancer HCC827 cells through suppressing Wnt/β-catenin signaling. Onco Targets Ther. 2020;13:10983–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhang J, et al. The potential roles of exosomal miR-214 in bone metastasis of lung adenocarcinoma. Front Oncol. 2020;10:611054–62.

    Article  PubMed  Google Scholar 

  44. Zhao X, et al. microRNA-214 governs lung cancer growth and metastasis by targeting carboxypeptidase-D. DNA Cell Biol. 2016;35(11):715–21.

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, et al. MicroRNA-214 inhibits the proliferation and invasion of lung carcinoma cells by targeting JAK1. Am J Transl Res. 2018;10(4):1164–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu ZL, et al. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem. 2013;372(1–2):35–45.

    Article  CAS  PubMed  Google Scholar 

  47. Gao W, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 2010;64(6):399–408.

    Article  CAS  PubMed  Google Scholar 

  48. Li B, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83(2):146–53.

    Article  PubMed  Google Scholar 

  49. Chang F, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003;17(3):590–603.

    Article  CAS  PubMed  Google Scholar 

  50. Bica-Pop C, et al. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci. 2018;75(19):3539–51.

    Article  CAS  PubMed  Google Scholar 

  51. Ren W, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38(1):62–75.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Huang WC, et al. The MEK/ERK/miR-21 signaling is critical in osimertinib resistance in EGFR-mutant non-small cell lung cancer cells. Cancers (Basel). 2021;13(23):6005–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dai L, et al. miR-21 regulates growth and EMT in lung cancer cells via PTEN/Akt/GSK3β signaling. Front Biosci (Landmark Ed). 2019;24(8):1426–39.

    Article  PubMed  Google Scholar 

  54. Zhang Z, et al. Antitumor activity of anti-miR-21 delivered through lipid nanoparticles. Adv Healthc Mater. 2023;12(6): e2202412.

    Article  PubMed  Google Scholar 

  55. Zhu X, et al. EMT-mediated acquired EGFR-TKI resistance in NSCLC: mechanisms and strategies. Front Oncol. 2019;9:1044–58.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Hata AN, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016;22(3):262–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Jin J, et al. Bufalin inhibits the malignant development of non-small cell lung cancer by mediating the circ_0046264/miR-522-3p axis. Biotechnol Lett. 2021;43(6):1229–40.

    Article  CAS  PubMed  Google Scholar 

  58. Tsubakihara Y, et al. Epithelial-mesenchymal transition and metastasis under the control of transforming growth factor β. Int J Mol Sci. 2018;19(11):3672–701.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Yang X, et al. The regulatory role of APE1 in epithelial-to-mesenchymal transition and in determining EGFR-TKI responsiveness in non-small-cell lung cancer. Cancer Med. 2018;7(9):4406–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Choi DY, et al. Extracellular vesicles shed from gefitinib-resistant nonsmall cell lung cancer regulate the tumor microenvironment. Proteomics. 2014;14(16):1845–56.

    Article  CAS  PubMed  Google Scholar 

  61. Yang B, et al. MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3. Biochem Biophys Res Commun. 2015;467(4):690–6.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 2020;19(1):47–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Sana J, et al. Novel classes of non-coding RNAs and cancer. J Transl Med. 2012;10:103–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Li C, et al. Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J Cell Physiol. 2019;234(11):20721–7.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao Y, et al. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer. Cell Death Dis. 2019;10(8):568–80.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Yin X, et al. Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells. Cell Oncol (Dordr). 2019;42(4):459–75.

    Article  CAS  PubMed  Google Scholar 

  67. Deng Q, et al. Exosomal long non-coding RNA MSTRG.292666.16 is associated with osimertinib (AZD9291) resistance in non-small cell lung cancer. Aging (Albany NY). 2020;12(9):8001–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wan X, et al. Exosomes derived from M2 type tumor-associated macrophages promote osimertinib resistance in non-small cell lung cancer through MSTRG.292666.16-miR-6836–5p-MAPK8IP3 axis. Cancer Cell Int. 2022;22(1):83–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Lu J, et al. Reprogramming of TAMs via the STAT3/CD47-SIRPα axis promotes acquired resistance to EGFR-TKIs in lung cancer. Cancer Lett. 2023;564:216205–20.

    Article  CAS  PubMed  Google Scholar 

  70. Isidro RA, et al. Colonic macrophage polarization in homeostasis, inflammation, and cancer. Am J Physiol Gastrointest Liver Physiol. 2016;311(1):59–73.

    Article  Google Scholar 

  71. Xu F, et al. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018;37(1):207–22.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Zhang X, et al. PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol. 2017;22(6):1026–33.

    Article  CAS  PubMed  Google Scholar 

  73. Xiao F, et al. M2 macrophages reduce the effect of gefitinib by activating AKT/mTOR in gefitinib-resistant cell lines HCC827/GR. Thorac Cancer. 2020;11(11):3289–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Teng Y, et al. Identification of an exosomal long noncoding RNA SOX2-OT in plasma as a promising biomarker for lung squamous cell carcinoma. Genet Test Mol Biomark. 2019;23(4):235–40.

    Article  CAS  Google Scholar 

  75. Wang Z, et al. LncRNA SOX2-OT is a novel prognostic biomarker for osteosarcoma patients and regulates osteosarcoma cells proliferation and motility through modulating SOX2. IUBMB Life. 2017;69(11):867–76.

    Article  CAS  PubMed  Google Scholar 

  76. Herrera-Solorio AM, et al. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol Oncol. 2021;15(4):1110–29.

    Article  CAS  PubMed  Google Scholar 

  77. Keniry A, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Ding D, et al. LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on Wnt signaling. Mol Cells. 2018;41(5):423–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Conigliaro A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155–65.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Sun H, et al. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep. 2015;33(6):3045–52.

    Article  CAS  PubMed  Google Scholar 

  81. Huang Z, et al. H19 promotes non-small-cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR-17. J Cell Physiol. 2018;233(10):6768–76.

    Article  CAS  PubMed  Google Scholar 

  82. Lei Y, et al. Tumor-released lncRNA H19 promotes gefitinib resistance via packaging into exosomes in non-small cell lung cancer. Oncol Rep. 2018;40(6):3438–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Galluzzi L, et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34(7):856–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Wu WK, et al. The autophagic paradox in cancer therapy. Oncogene. 2012;31(8):939–53.

    Article  CAS  PubMed  Google Scholar 

  85. Sui X, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4(10):e838–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. O’Donovan TR, et al. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy. 2011;7(5):509–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Huang FX, et al. LncRNA BLACAT1 is involved in chemoresistance of non-small cell lung cancer cells by regulating autophagy. Int J Oncol. 2019;54(1):339–47.

    CAS  PubMed  Google Scholar 

  88. Pan R, et al. Exosomal transfer of lncRNA H19 Promotes erlotinib resistance in non-small cell lung cancer via miR-615-3p/ATG7 axis. Cancer Manag Res. 2020;12:4283–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Chen C, et al. LncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett. 2020;486:58–70.

    Article  CAS  PubMed  Google Scholar 

  90. Xu C, et al. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol Res. 2023;191:106739–52.

    Article  CAS  PubMed  Google Scholar 

  91. Xue M, et al. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol. 2016;142(7):1407–19.

    Article  PubMed  Google Scholar 

  92. Shi W, et al. LncRNA UCA1 promoted cisplatin resistance in lung adenocarcinoma with HO1 targets NRF2/HO1 pathway. J Cancer Res Clin Oncol. 2023;149(3):1295–311.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang B, et al. Knockout of lncRNA UCA1 inhibits drug resistance to gefitinib via targeting STAT3 signaling in NSCLC. Minerva Med. 2019;110(3):273–5.

    Article  PubMed  Google Scholar 

  94. Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol. 2000;15(3):921–8.

    CAS  PubMed  Google Scholar 

  95. Wang J, et al. FOSL2 positively regulates TGF-β1 signalling in non-small cell lung cancer. PLoS ONE. 2014;9(11):e112150–6.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Chen X, et al. lncRNA UCA1 promotes gefitinib resistance as a ceRNA to target FOSL2 by sponging miR-143 in non-small cell lung cancer. Mol Ther Nucleic Acids. 2020;19:643–53.

    Article  CAS  PubMed  Google Scholar 

  97. Han QF, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21(1):207–32.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Yu W, et al. YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma. Cancer Gene Ther. 2023;30(1):149–62.

    Article  CAS  PubMed  Google Scholar 

  99. Chen R, et al. Exosomes-transmitted miR-7 reverses gefitinib resistance by targeting YAP in non-small-cell lung cancer. Pharmacol Res. 2021;165:105442–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Project for Youth Talent of Changzhou Health Commission (QN201703), Young Talent Development Plan of Changzhou Health Commission (CZQM2020024), Major Science and Technology Project of Changzhou Health Commission (ZD202004, ZD202007), and China Postdoctoral Science Foundation (2020M670064ZX).

Funding

This study was supported by the Science and Technology Project for Youth Talent of Changzhou Health Commission (QN201703), Young Talent Development Plan of Changzhou Health Commission (CZQM2020024), Major Science and Technology Project of Changzhou Health Commission (ZD202004, ZD202007), and China Postdoctoral Science Foundation (2020M670064ZX).

Author information

Authors and Affiliations

Authors

Contributions

DC, BW, LW, RC, WZ, CF, MJ contributed to the study conception and design. The first draft of the manuscript was written by DC and all authors commented on previous versions of the manuscript. DC, BW, LW, RC, WZ, CF, MJ read and approved the final manuscript.

Corresponding authors

Correspondence to Cheng Fang or Mei Ji.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Wang, B., Wu, L. et al. Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation. Med Oncol 40, 254 (2023). https://doi.org/10.1007/s12032-023-02125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02125-3

Keywords

Navigation