Skip to main content

Advertisement

Log in

Isorhamnetin exerts anti-tumor activity in DEN + CCl4-induced HCC mice

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers. However, the in vivo mechanism of isorhamnetin to suppress liver cancer has yet to be explored.

Methods and Result

HCC was induced by N-diethylnitrosamine (DEN) and carbon tetrachloride (CCL4) in Swiss albino mice. Isorhamnetin (100 mg/kg body weight) was given to examine its anti-tumor properties in HCC mice model. Histological analysis and liver function assays were performed to assess changes in liver anatomy. Probable molecular pathways were explored using immunoblot, qPCR, ELISA, and immunohistochemistry techniques. Isorhamnetin inhibited various pro-inflammatory cytokines to suppress cancer-inducing inflammation. Additionally, it regulated Akt and MAPKs to suppress Nrf2 signaling. Isorhamnetin activated PPAR-γ and autophagy while suppressing cell cycle progression in DEN + CCl4-administered mice. Additionally, isorhamnetin regulated various signaling pathways to suppress cell proliferation, metabolism, and epithelial–mesenchymal transition in HCC.

Conclusion

Regulating diverse cellular signaling pathways makes isorhamnetin a better anti-cancer chemotherapeutic candidate in HCC. Importantly, the anti-TNF-α properties of isorhamnetin could prove it a valuable therapeutic agent in sorafenib-resistant HCC patients. Additionally, anti-TGF-β properties of isorhamnetin could be utilized to reduce the EMT-inducing side effects of doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ATG7:

Autophagy-related 7

Bad:

BCL2-associated agonist of cell death

CCl4 :

Carbon tetrachloride

C/EBP-δ:

CCAAT/enhancer-binding protein delta

DEN:

N-Diethylnitrosamine

Doxo:

Doxorubicin

ERK:

Extracellular signal-regulated kinase

EMT:

Epithelial–mesenchymal transition

GSK-3β:

Glycogen synthase kinase-3 beta:

HCC:

Hepatocellular carcinoma

HO-1:

Heme Oxygenase-1

HRP:

Horseradish peroxidise

IRN:

Isorhamnetin

JNK:

C-Jun N-terminal kinase

Keap1:

Kelch-like ECH-associated protein 1

Lamp2A:

Lysosomal associated membrane protein-2

MMP-9:

Matrix metalloproteinases 9

Mcl-1:

Myeloid cell leukemia-1

mTOR:

Mammalian target of rapamycin

Nrf2:

Nuclear factor erythroid 2-related factor 2

NSCLC:

Non-small cell lung carcinoma

PPAR-γ:

Peroxisome proliferator-activated receptor-gamma

ROS:

Reactive oxygen species

RSK:

Ribosomal S6 kinase

RUNX2:

Runt-related transcription factor 2

SOD:

Superoxide dismutase

SDS:

Sodium dodecyl sulfate

SVR:

Sustained virological response

STAT3:

Signal transducer and activator of transcription 3

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

YAP1:

Yes-associated protein 1

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Chavda HJ. Hepatocellular carcinoma in India. Indian J Surg. 2021;83(4):959–66.

    Google Scholar 

  3. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380(15):1450–62.

    CAS  PubMed  Google Scholar 

  4. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.

    PubMed  Google Scholar 

  5. Ali Abdalla YO, Subramaniam B, Nyamathulla S, Shamsuddin, et al. Natural products for cancer therapy: a review of their mechanism of actions and toxicity in the past decade. J Trop Med. 2022;2022: e5794350.

    Google Scholar 

  6. Ghosh N, Kundu M, Ghosh S, Das AK, De S, Das J, Sil PC. pH-responsive and targeted delivery of chrysin via folic acid-functionalized mesoporous silica nanocarrier for breast cancer therapy. Int J Pharm. 2023;631: 122555.

    CAS  PubMed  Google Scholar 

  7. Bhattacharya D, Sinha R, Mukherjee P, et al. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microb Pathog. 2020;140: 103927.

    CAS  PubMed  Google Scholar 

  8. Gong G, Guan YY, Zhang ZL, Rahman K, et al. Isorhamnetin: a review of pharmacological effects. Biomed Pharmacother. 2020;128: 110301.

    CAS  PubMed  Google Scholar 

  9. Antunes-Ricardo M, Moreno-García BE, Gutiérrez-Uribe JA, et al. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads. Plant Foods Hum Nutr. 2014;69:331–6.

    CAS  PubMed  Google Scholar 

  10. Hu S, Huang L, Meng L, et al. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways. Mol Med Rep. 2015;12(5):6745–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Fan B, Pu N, et al. Isorhamnetin suppresses human gastric cancer cell proliferation through mitochondria-dependent apoptosis. Molecules. 2022;27(16):5191.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang BY, Wang YM, Gong H, et al. Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC). Int J Clin Exp Pathol. 2015;8(1):25–37.

    PubMed  PubMed Central  Google Scholar 

  13. Lu X, Liu T, Chen K, et al. Isorhamnetin: a hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed Pharmacother. 2018;103:800–11.

    CAS  PubMed  Google Scholar 

  14. Liu N, Feng J, Lu X, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways. Mediat Inflamm. 2019;2019:1–14.

    Google Scholar 

  15. Yang JH, Shin BY, Han JY, Kim MG, Wi JE, Kim YW, et al. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol Appl Pharmacol. 2014;274(2):293–301.

    CAS  PubMed  Google Scholar 

  16. Uehara T, Pogribny IP, Rusyn I. The DEN and CCl4 -induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr Protoc Pharmacol. 2014;66:14–30.

    PubMed Central  Google Scholar 

  17. Sur S, Pal D, Mandal S, Roy A, Panda CK. Tea polyphenols epigallocatechin gallete and theaflavin restrict mouse liver carcinogenesis through modulation of self-renewal Wnt and hedgehog pathways. J Nutr Biochem. 2016;27:32–42.

    CAS  PubMed  Google Scholar 

  18. Fei R, Wei H. Quantitative proteomic analysis of Isorhamnetin treatment in human liver cancer cells. J Med Plants. 2018;12(7):77–88.

    CAS  Google Scholar 

  19. Teng BS, Lu YH, Wang ZT, et al. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol Res. 2006;54(3):186–94.

    CAS  PubMed  Google Scholar 

  20. Park C, Cha HJ, Choi EO, et al. Isorhamnetin induces cell cycle arrest and apoptosis via reactive oxygen species-mediated AMP-activated protein kinase signaling pathway activation in human bladder cancer cells. Cancers. 2019;11(10):1494.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai F, Zhang Y, Li J, et al. Isorhamnetin inhibited the proliferation and metastasis of androgen-independent prostate cancer cells by targeting the mitochondrion-dependent intrinsic apoptotic and PI3K/Akt/mTOR pathway. Biosci Rep. 2020;40(3):BSR20192826.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramachandran L, Manu KA, Shanmugam MK, et al. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J Biol Chem. 2012;287(45):38028–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Sun G, Meng X, et al. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS ONE. 2013;8(5): e64526.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin C, Li H, He Y, et al. Combination chemotherapy of doxorubicin and paclitaxel for hepatocellular carcinoma in vitro and in vivo. J Cancer Res Clin Oncol. 2010;136:267–74.

    CAS  PubMed  Google Scholar 

  25. Manna P, Sinha M, Sil PC. Protection of arsenic-induced hepatic disorder by arjunolic acid. Basic Clin Pharmacol Toxicol. 2007;101(5):333–8.

    CAS  PubMed  Google Scholar 

  26. Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol. 2016;97:187–98.

    CAS  PubMed  Google Scholar 

  27. Das AK, Hossain U, Ghosh S, et al. Amelioration of oxidative stress mediated inflammation and apoptosis in pancreatic islets by Lupeol in STZ-induced hyperglycaemic mice. Life Sci. 2022;305: 120769.

    CAS  PubMed  Google Scholar 

  28. Manna P, Sinha M, Sil PC. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: activation of polyol pathway and oxidative stress responsive signaling cascades. Chem Biol Interact. 2009;181(3):297–308.

    CAS  PubMed  Google Scholar 

  29. Manna P, Ghosh J, Das J, Sil PC. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid. Toxicol Appl Pharmacol. 2010;244(2):114–29.

    CAS  PubMed  Google Scholar 

  30. Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PC. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep. 2016;5:313–27.

    PubMed  PubMed Central  Google Scholar 

  31. Ghosh N, Chatterjee S, Biswal D, Pramanik NR, Chakrabarti S, Sil PC. Oxidative stress imposed in vivo anticancer therapeutic efficacy of novel imidazole-based oxidovanadium (IV) complex in solid tumor. Life Sci. 2022;301: 120606.

    CAS  PubMed  Google Scholar 

  32. Ambade A, Satishchandran A, Gyongyosi B, et al. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J Gastroenterol. 2016;22(16):4091.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujiwara M, Kwok S, Yano H, Pai RK. Arginase-1 is a more sensitive marker of hepatic differentiation than HepPar-1 and glypican-3 in fine-needle aspiration biopsies. Cancer Cytopathol. 2012;120(4):230–7.

    CAS  PubMed  Google Scholar 

  34. Radwan NA, Ahmed NS. The diagnostic value of arginase-1 immunostaining in differentiating hepatocellular carcinoma from metastatic carcinoma and cholangiocarcinoma as compared to HepPar-1. Diagnostic Pathol. 2012;7:1–12.

    Google Scholar 

  35. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

    PubMed  Google Scholar 

  36. Li W, Jian YB. Antitumor necrosis factor-alpha antibodies as a noveltherapy for hepatocellular carcinoma. Exp Ther Med. 2018;16(2):529–36.

    PubMed  PubMed Central  Google Scholar 

  37. Das M, Sabio G, Jiang F, et al. Induction of hepatitis by JNK-mediated expression of TNF-α. Cell. 2009;136(2):249–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eferl R, Ricci R, Kenner L, et al. Liver tumor development: c-Jun antagonizes the proapoptotic activity of p53. Cell. 2003;112(2):181–92.

    CAS  PubMed  Google Scholar 

  39. Kudo M, Sugawara A, Uruno A, et al. Transcription suppression of peroxisome proliferator-activated receptor γ2 gene expression by tumor necrosis factor α via an inhibition of CCAAT/enhancer-binding protein δ during the early stage of adipocyte differentiation. Endocrinology. 2004;145(11):4948–56.

    CAS  PubMed  Google Scholar 

  40. Adams M, Reginato MJ, Shao D, et al. Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem. 1997;272(8):5128–32.

    CAS  PubMed  Google Scholar 

  41. Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma. 2014;1:127–35.

    PubMed  PubMed Central  Google Scholar 

  42. Scheau C, Badarau IA, Costache R, et al. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol. 2019;2019:9423907.

    Google Scholar 

  43. Shen B, Chu ES, Zhao G, et al. PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice. Br J Cancer. 2012;106(9):1486–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarkar S, Ghosh N, Kundu M, Sil PC (2020) Nrf2 and Inflammation-Triggered Carcinogenesis. In: Deng H (eds) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol 85th. Springer, Cham, pp 129–152.

  45. Doehn U, Hauge C, Frank SR, et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009;35(4):511–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tong J, Wang P, Tan S, et al. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 2017;77(9):2512–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Deane NG, Parker MA, Aramandla R, et al. Hepatocellular carcinoma results from chronic cyclin D1 overexpression in transgenic mice. Cancer Res. 2001;61(14):5389–95.

    CAS  PubMed  Google Scholar 

  48. Kossatz U, Malek NP. p27: tumor suppressor and oncogene …? Cell Res. 2007;17(10):832–3.

    CAS  PubMed  Google Scholar 

  49. Wagayama H, Shiraki K, Sugimoto K, et al. High expression of p21WAF1/CIP1 is correlated with human hepatocellular carcinoma in patients with hepatitis C virus-associated chronic liver diseases. Hum Pathol. 2002;33(4):429–34.

    CAS  PubMed  Google Scholar 

  50. Shiraki K, Wagayama H. Cytoplasmic p21(WAF1/CIP1) expression in human hepatocellular carcinomas. Liver Int. 2006;26(8):1018–9.

    CAS  PubMed  Google Scholar 

  51. Das AK, Ghosh N, Mandal A, Sil PC. Glycobiology of cellular expiry: decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer. Biochem Pharmacol. 2022;207: 115367.

    Google Scholar 

  52. Lee YA, Noon LA, Akat KM, et al. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nat Commun. 2018;9(1):4962.

    PubMed  PubMed Central  Google Scholar 

  53. Ghosh N, Hossain U, Mandal A, Sil PC. The Wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci. 2019;1443(1):54–74.

    PubMed  Google Scholar 

  54. Tan W, Luo X, Li W, et al. TNF-alpha is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2019;40:446–56.

    PubMed  Google Scholar 

  55. Ye J. Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun. 2008;374(3):405–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Ms. Noyel Ghosh and Ms. Ankita Mandal for their valuable inputs during the preparation of the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to conceptualization, methodology, software, validation, data curation, formal analysis, investigation, writing of the original draft, visualization, and writing, reviewing, & editing of the manuscript. AKD contributed to methodology, validation, and writing, reviewing, & editing of the manuscript. SB contributed to conceptualization. RG contributed to conceptualization, validation, data curation, formal analysis, visualization, and writing, reviewing, & editing of the manuscript. PCS contributed to conceptualization, validation, data curation, formal analysis, visualization, and writing, reviewing, & editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Parames C. Sil.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All the animal experiments were prosecuted according to the institutional ethical committee and with the permission of IAEC, CPCSEA (Committee for the Purpose of Control & Supervision on Experiments on Animals) and the Ministry of Environment and Forests, New Delhi, India [1796/GO/EReBiBt/S/14/CPCSEA].

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1249 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Das, A.K., Bhattacharya, S. et al. Isorhamnetin exerts anti-tumor activity in DEN + CCl4-induced HCC mice. Med Oncol 40, 188 (2023). https://doi.org/10.1007/s12032-023-02050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02050-5

Keywords

Navigation