Skip to main content

Advertisement

Log in

Niosomes: a novel targeted drug delivery system for cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

N/A.

References

  1. Moghimi SM, Kissel TJ. Particulate nanomedicines. Adv Drug Deliv Rev. 2006;58(14):1451–5.

    Article  PubMed  CAS  Google Scholar 

  2. Miller RP, et al. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490–518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Grigorian A, O’Brien CB. Hepatotoxicity secondary to chemotherapy. J Clin Transl Hepatol. 2014;2(2):95.

    PubMed  PubMed Central  Google Scholar 

  4. Omoti AE, Omoti CE. Ocular toxicity of systemic anticancer chemotherapy. Pharm Pract. 2006;4(2):55.

    Google Scholar 

  5. Lindenberg M, et al. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm BioPharm. 2004;58(2):265–78.

    Article  PubMed  Google Scholar 

  6. Hauss DJ. Oral Lipid-Based Formulations: Enhancing the Bioavailability of Poorly Water-Soluble Drugs, vol. 170. Boca Raton: CRC Press; 2007.

    Book  Google Scholar 

  7. Naseroleslami M, et al. Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury. Drug Deliv Transl Res. 2022;12(6):1423–32.

    Article  PubMed  CAS  Google Scholar 

  8. Barani M, et al. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater Sci Eng C. 2020;113:110975.

    Article  CAS  Google Scholar 

  9. Choi YH, Han H-KJ. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48(1):43–60.

    Article  PubMed  CAS  Google Scholar 

  10. Rajaee Behbahani S, et al. Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. PLoS ONE. 2020;15(7):e0235556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sotoodehnia-Korani S, et al. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ Pollut. 2020;265:114727.

    Article  PubMed  CAS  Google Scholar 

  12. Bourbour M, et al. Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells. Mol Syst Des Eng. 2022;7:1102.

    Article  CAS  Google Scholar 

  13. Akbarzadeh I, et al. The optimized formulation of tamoxifen-loaded niosomes efficiently induced apoptosis and cell cycle arrest in breast cancer cells. AAPS PharmSciTech. 2022;23(1):1–13.

    Article  Google Scholar 

  14. Mahale N, et al. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci. 2012;183:46–54.

    Article  PubMed  Google Scholar 

  15. Rai A, et al. Niosomes: an approach to current drug delivery-A review. Int J Adv Pharm. 2017;6(2):41–8.

    CAS  Google Scholar 

  16. Moghanloo M, et al. Differential physiology and expression of phenylalanine ammonia lyase (PAL) and universal stress protein (USP) in the endangered species Astragalus fridae following seed priming with cold plasma and manipulation of culture medium with silica nanoparticles. 3 Biotech. 2019;9(7):1–13.

    Article  Google Scholar 

  17. Sahrayi H, et al. Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: synergic effect, augmentation of cytotoxicity, and apoptosis gene expression. Pharmaceuticals. 2021;15(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akbarzadeh I, et al. Development of a novel niosomal formulation for Gabapentin. Iran J Colorectal Res. 2021;9(4):149–57.

    Google Scholar 

  19. Akbarzadeh I, et al. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: an in-vitro investigation. Adv Powder Technol. 2020;31(9):4064–71.

    Article  CAS  Google Scholar 

  20. Akbarzadeh I, et al. Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids. 2021;234:105019.

    Article  PubMed  CAS  Google Scholar 

  21. Moghanloo M, et al. Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiol Plant. 2019;41(4):1–13.

    Article  CAS  Google Scholar 

  22. Manosroi A, et al. Entrapment enhancement of peptide drugs in niosomes. J Microencapsul. 2010;27(3):272–80.

    Article  PubMed  CAS  Google Scholar 

  23. Muller JM, et al. VIP as a cell-growth and differentiation neuromodulator role in neurodevelopment. Mol Neurobiol. 1995;10(2–3):115–34.

    Article  PubMed  CAS  Google Scholar 

  24. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–19.

    Article  Google Scholar 

  25. Weng Y, et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281–91.

    Article  PubMed  Google Scholar 

  26. Akbarzadeh I, et al. Niosomal formulation for co-administration of hydrophobic anticancer drugs into MCF-7 cancer cells. Arch Adv Biosci. 2020;11(2):1–9.

    Google Scholar 

  27. Ghafelehbashi R, et al. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int J Pharm. 2019;569:118580.

    Article  PubMed  CAS  Google Scholar 

  28. Hedayati Ch M, et al. Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mater Res Part A. 2021;109(6):966–80.

    Article  CAS  Google Scholar 

  29. Akbarzadeh I, et al. Preparation, optimization and in-vitro evaluation of curcumin-loaded Niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology. 2021;10(3):173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Akbarzadeh I, et al. Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: an in-vitro investigation. J Drug Deliv Sci Technol. 2020;57:101715.

    Article  CAS  Google Scholar 

  31. Moghaddam FD, et al. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol. 2021;12(1):1–35.

    Google Scholar 

  32. Khanam N, et al. Recent trends in drug delivery by niosomes: a review. Asian J Pharm Res Dev. 2013;1:115–22.

    Google Scholar 

  33. Sadeghi S, et al. Design and physicochemical characterization of lysozyme loaded niosomal formulations as a new controlled delivery system. Pharm Chem J. 2020;53(10):921–30.

    Article  CAS  Google Scholar 

  34. Shirzad M, et al. The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of PEGylated nanoliposomal cisplatin. Assay Drug Dev. 2019;17(5):231–9.

    Article  CAS  Google Scholar 

  35. Kazi KM, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Targhi AA, et al. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: enhanced antibacterial and anti-biofilm activities. Bioorg Chem. 2021;115:105116.

    Article  PubMed  CAS  Google Scholar 

  37. Moghtaderi M, et al. Enhanced antibacterial activity of Echinacea angustifolia extract against multidrug-resistant Klebsiella pneumoniae through niosome encapsulation. Nanomaterials. 2021;11(6):1573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Onoue S, Yamada S, Chan H-KJ. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9:1025.

    Article  CAS  Google Scholar 

  39. Baillie AJ, et al. The preparation and properties of niosomes–non-ionic surfactant vesicles. J Pharm Pharmacol. 1985;37(12):863–8.

    Article  PubMed  CAS  Google Scholar 

  40. Jin C, et al. Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int J Med Sci. 2020;17(18):2964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Din FU, Shah SU. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv. 2017;24:56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Akbarzadeh I, et al. Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Dev Ind Pharm. 2020;46(9):1535–49.

    Article  PubMed  CAS  Google Scholar 

  43. Naseroleslami M, et al. Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury. Drug Deliv Transl Res. 2021;12:1423.

    Article  PubMed  Google Scholar 

  44. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.

    Article  PubMed  CAS  Google Scholar 

  45. Shi C, et al. A drug-specific nanocarrier design for efficient anticancer therapy. Nat Commun. 2015;6(1):1–14.

    Article  Google Scholar 

  46. Mirzaie A, et al. Preparation and optimization of ciprofloxacin encapsulated niosomes: a new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg Chem. 2020;103:104231.

    Article  PubMed  CAS  Google Scholar 

  47. Iranbakhsh A, Ardebili ZO, Ardebili NO. Synthesis and characterization of zinc oxide nanoparticles and their impact on plants. Plant Responses to Nanomaterials: Recent Interventions, and Physiological and Biochemical Responses, 2021: 33–93

  48. Khan R, Irchhaiya RJ. Niosomes: a potential tool for novel drug delivery. J Pharm Investig. 2016;46(3):195–204.

    Article  CAS  Google Scholar 

  49. Jamshidifar E, et al. Super magnetic niosomal nanocarrier as a new approach for treatment of breast cancer: a case study on SK-BR-3 and MDA-MB-231 cell lines. Int J Mol Sci. 2021;22(15):7948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ge X, et al. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.

    Article  PubMed Central  CAS  Google Scholar 

  51. Marianecci C, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014;205:187–206.

    Article  PubMed  CAS  Google Scholar 

  52. Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev. 2008;60(15):1663–73.

    Article  PubMed  CAS  Google Scholar 

  53. Biswal S, et al. Vesicles of non-ionic surfactants (niosomes) and drug delivery potential. Int J Pharm Sci Nanotechnol. 2008;1(1):1–8.

    CAS  Google Scholar 

  54. Shahiwala A, Misra AJ. Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci. 2002;5(3):220–5.

    PubMed  CAS  Google Scholar 

  55. Pardakhty A, Varshosaz J, Rouholamini AJ. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm. 2007;328(2):130–41.

    Article  PubMed  CAS  Google Scholar 

  56. Mohanty A, Dey JJ. Enantioselectivity of vesicle-forming chiral surfactants in capillary electrophoresis: role of the surfactant headgroup structure. J Chromatogr A. 2006;1128(1–2):259–66.

    Article  PubMed  CAS  Google Scholar 

  57. Harvey RD, et al. The effect of electrolyte on the morphology of vesicles composed of the dialkyl polyoxyethylene ether surfactant 2C18E12. Chem Phys Lipids. 2005;133(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  58. Puras G, et al. A novel cationic niosome formulation for gene delivery to the retina. J Control Release. 2014;174:27–36.

    Article  PubMed  CAS  Google Scholar 

  59. Primavera R, et al. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. Eur J Pharm Biopharm. 2018;127:432–42.

    Article  PubMed  Google Scholar 

  60. Barani M, et al. Lawsone-loaded niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. DARU J Pharm Sci. 2018;26(1):11–7.

    Article  CAS  Google Scholar 

  61. Bhaskaran S, Panigrahi LJ. Formulation and evaluation of niosomes using different non-ionic surfactants. Indian J Pharm Sci. 2002;64(1):63.

    CAS  Google Scholar 

  62. Rogerson A, et al. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol. 1988;40(5):337–42.

    Article  PubMed  CAS  Google Scholar 

  63. Yadavar-Nikravesh M-S, et al. Construction and characterization of a novel tenofovir-loaded pegylated niosome conjugated with tat peptide for evaluation of its cytotoxicity and anti-hiv effects. Adv Powder Technol. 2021;32(9):3161–73.

    Article  CAS  Google Scholar 

  64. Sahu AK, Mishra J, Mishra AK. Introducing Tween-curcumin niosomes: preparation, characterization and microenvironment study. Soft Matter. 2020;16(7):1779–91.

    Article  PubMed  CAS  Google Scholar 

  65. Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci. 1995;58(1):1–55.

    Article  CAS  Google Scholar 

  66. Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105(1):1–6.

    Article  CAS  Google Scholar 

  67. Mokhtar M, et al. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1–2):104–11.

    Article  PubMed  CAS  Google Scholar 

  68. Obeid MA, et al. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int J Pharm. 2017;516(1–2):52–60.

    Article  PubMed  CAS  Google Scholar 

  69. Sahin NO. Niosomes as nanocarrier systems. In: Mozafari MR, editor. Nanomaterials and nanosystems for biomedical applications. Dordrecht: Springer; 2007. p. 67–81.

    Chapter  Google Scholar 

  70. Marianecci C, et al. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: characterization and interaction with human lung fibroblasts. J Control Release. 2010;147(1):127–35.

    Article  PubMed  CAS  Google Scholar 

  71. Mizrahy S, et al. Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J Control Release. 2011;156(2):231–8.

    Article  PubMed  CAS  Google Scholar 

  72. Liu T, et al. Structure behaviors of hemoglobin in PEG 6000/Tween 80/Span 80/H2O niosome system. Colloids Surf A. 2007;293(1–3):255–61.

    Article  CAS  Google Scholar 

  73. Pouyani T, Prestwich GD. Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials. Bioconjug Chem. 1994;5(4):339–47.

    Article  PubMed  CAS  Google Scholar 

  74. Kaur D, Kumar SJ. Niosomes: present scenario and future aspects. J Drug Deliv Ther. 2018;8(5):35–43.

    Article  Google Scholar 

  75. Ong SGM, et al. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8(4):36.

    Article  PubMed Central  Google Scholar 

  76. Jain S, et al. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol Lett. 2005;101(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  77. Devaraj GN, et al. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interfaces Sci. 2002;251(2):360–5.

    Article  CAS  Google Scholar 

  78. Baillie A, et al. The preparation and properties of niosomes—non-ionic surfactant vesicles. J Pharm Pharmacol. 1985;37(12):863–8.

    Article  PubMed  CAS  Google Scholar 

  79. Khan DH, et al. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J Drug Deliv Sci Technol. 2019;50:27–33.

    Article  CAS  Google Scholar 

  80. Chen S, et al. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.

    Article  PubMed  Google Scholar 

  81. Baillie AJ, et al. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986;38(7):502–5.

    Article  PubMed  CAS  Google Scholar 

  82. Mansouri M, et al. Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities. Front Bioeng Biotechnol. 2021;9:745099.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guinedi AS, et al. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005;306(1–2):71–82.

    Article  PubMed  CAS  Google Scholar 

  84. Obeid MA, et al. Formulation of nonionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol Pharm. 2017;14(7):2450–8.

    Article  PubMed  CAS  Google Scholar 

  85. Yeo LK, et al. Brief effect of a small hydrophobic drug (cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods. Pharmaceutics. 2018;10(4):185.

    Article  PubMed Central  CAS  Google Scholar 

  86. Bhaskaran S, Lakshmi PK. Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharm Sci. 2009;51:27–32.

    CAS  Google Scholar 

  87. Azmin M, et al. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985;37(4):237–42.

    Article  PubMed  CAS  Google Scholar 

  88. Sezgin-Bayindir Z, et al. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. J Microencapsul. 2013;30(8):796–804.

    Article  PubMed  CAS  Google Scholar 

  89. Amiri B, et al. Delivery of vinblastine-containing niosomes results in potent in vitro/in vivo cytotoxicity on tumor cells. Drug Dev Ind Pharm. 2018;44(8):1371–6.

    Article  PubMed  CAS  Google Scholar 

  90. Katare R, et al. Development of polysaccharide-capped niosomes for oral immunization of tetanus toxoid. J Drug Deliv Sci Technol. 2006;16(3):167–72.

    Article  CAS  Google Scholar 

  91. Zidan AS, Habib MJ. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels. J Pharm Sci. 2014;103(3):952–64.

    Article  PubMed  CAS  Google Scholar 

  92. Alam MS, et al. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother. 2018;97:1514–20.

    Article  PubMed  CAS  Google Scholar 

  93. Akhter S, et al. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir. Drug Dev Ind Pharm. 2012;38(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  94. Balakrishnan P, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1–2):1–8.

    Article  PubMed  CAS  Google Scholar 

  95. El-Ridy MS, et al. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev Ind Pharm. 2011;37(12):1491–508.

    Article  PubMed  CAS  Google Scholar 

  96. Alam M, et al. Development, characterization and efficacy of niosomal diallyl disulfide in treatment of disseminated murine candidiasis. Nanomedicine. 2013;9(2):247–56.

    Article  PubMed  CAS  Google Scholar 

  97. Waddad AY, et al. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int J Pharm. 2013;456(2):446–58.

    Article  PubMed  CAS  Google Scholar 

  98. Junyaprasert VB, Singhsa P, Jintapattanakit AJ. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Int J Pharm. 2013;8(2):110–7.

    CAS  Google Scholar 

  99. Ag Seleci D, et al. Rapid microfluidic preparation of niosomes for targeted drug delivery. Int J Mol Sci. 2019;20(19):4696.

    Article  PubMed Central  Google Scholar 

  100. Zubairu Y, et al. Design and development of novel bioadhesive niosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations. Asian J Pharm Sci. 2015;10(4):322–30.

    Article  Google Scholar 

  101. Mansoori-Kermani A, et al. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Mater Today Bio. 2022;16:100349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Karimifard S, et al. pH-responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy. ACS Appl Nano Mater. 2022;5(7):8811–25.

    Article  CAS  Google Scholar 

  103. Rezaei T, et al. Folic acid-decorated ph-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: In Vitro Studies. Front Pharmacol. 2022;13:851242.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Nematollahi MH, et al. Changes in physical and chemical properties of niosome membrane induced by cholesterol: a promising approach for niosome bilayer intervention. RSC Adv. 2017;7(78):49463–72.

    Article  CAS  Google Scholar 

  105. Shilpa S, Srinivasan B, Chauhan MJ. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int J Drug Deliv 2011;3(1)

  106. Escudero I, et al. Formulation and characterization of Tween 80/cholestherol niosomes modified with tri-n-octylmethylammonium chloride (TOMAC) for carboxylic acids entrapment. Colloids Surf A. 2014;461:167–77.

    Article  CAS  Google Scholar 

  107. Manosroi A, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B. 2003;30(1–2):129–38.

    Article  CAS  Google Scholar 

  108. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.

    Article  CAS  Google Scholar 

  109. Girigoswami A, Das S, De S. Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochim Acta A Mol Biomol Spectrosc. 2006;64(4):859–66.

    Article  PubMed  Google Scholar 

  110. Abd-Elbary A, El-Laithy H, Tadros MJ. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Int J Pharm. 2008;357(1–2):189–98.

    Article  PubMed  CAS  Google Scholar 

  111. Patel J, et al. Potentiating antimicrobial efficacy of propolis through niosomal-based system for administration. Integr Med Res. 2015;4(2):94–101.

    Article  PubMed  Google Scholar 

  112. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99(4):2049–60.

    Article  PubMed  CAS  Google Scholar 

  113. Amale FR, et al. Gold nanoparticles loaded into niosomes: a novel approach for enhanced antitumor activity against human ovarian cancer. Adv Powder Technol. 2021;32(12):4711–22.

    Article  Google Scholar 

  114. Agarwal S, et al. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Adv. 2018;8(57):32621–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: recent advances. Res Rep Transdermal Drug Deliv. 2015;4:23–33.

    CAS  Google Scholar 

  116. Riccardi C, et al. AS1411-decorated niosomes as effective nanocarriers for Ru (III)-based drugs in anticancer strategies. J Mater Chem B. 2018;6(33):5368–84.

    Article  PubMed  CAS  Google Scholar 

  117. Riccardi C, et al. Anticancer ruthenium (III) complexes and Ru (III)-containing nanoformulations: an update on the mechanism of action and biological activity. Pharmaceuticals. 2019;12(4):146.

    Article  PubMed Central  CAS  Google Scholar 

  118. Rohde LE, et al. Health outcomes in decompensated congestive heart failure: a comparison of tertiary hospitals in Brazil and United States. Int J Cardiol. 2005;102(1):71–7.

    Article  PubMed  Google Scholar 

  119. Barani M, et al. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater Sci Eng. 2020;113:110975.

    Article  CAS  Google Scholar 

  120. Shah HS, et al. Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; in vitro, in vivo and molecular docking studies. Molecules. 2021;26(22):6990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Baranei M, et al. Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Mater Today Commun. 2021;26:101751.

    Article  CAS  Google Scholar 

  122. Dabbagh Moghaddam F, et al. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol. 2021;12(1):1–35.

    Article  Google Scholar 

  123. Katiyar RS, Jha PK. Molecular simulations in drug delivery: opportunities and challenges. Wiley Interdiscip Rev Comput Mol Sci. 2018;8(4):e1358.

    Article  Google Scholar 

  124. Li Q, et al. Drug-loaded pH-responsive polymeric micelles: Simulations and experiments of micelle formation, drug loading and drug release. Colloids Surf B. 2017;158:709–16.

    Article  CAS  Google Scholar 

  125. Xiang T-X, Anderson BD. Molecular dynamics simulation of amorphous hydroxypropylmethylcellulose and its mixtures with felodipine and water. J Pharm Sci. 2017;106(3):803–16.

    Article  PubMed  CAS  Google Scholar 

  126. Wen W, et al. Benzaldehyde, a new absorption promoter, accelerating absorption on low bioavailability drugs through membrane permeability. Front Pharmacol. 2021;12:1176.

    Article  Google Scholar 

  127. Wadhwa R, et al. Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Sci Rep. 2021;11(1):1–15.

    Article  Google Scholar 

  128. Yousefpour A, et al. Interaction of PEGylated anti-hypertensive drugs, amlodipine, atenolol and lisinopril with lipid bilayer membrane: a molecular dynamics simulation study. Biochim Biophys Acta BBA-Biomembr. 2015;1848(8):1687–98.

    Article  CAS  Google Scholar 

  129. Gao Y, Olsen KW. Molecular dynamics of drug crystal dissolution: simulation of acetaminophen form I in water. Mol Pharm. 2013;10(3):905–17.

    Article  PubMed  CAS  Google Scholar 

  130. Gani R, et al. A modern approach to solvent selection: although chemists’ and engineers’ intuition is still important, powerful tools are becoming available to reduce the effort needed to select the right solvent. Chem Eng. 2006;113(3):30–44.

    CAS  Google Scholar 

  131. Seyf JY, Haghtalab A. A junction between molecular dynamics simulation and local composition models for computation of solid-liquid equilibrium-A pharmaceutical solubility application. Fluid Phase Equilib. 2017;437:83–95.

    Article  Google Scholar 

  132. Xiang T-X, Anderson BD. Molecular dynamics simulation of amorphous hydroxypropyl-methylcellulose acetate succinate (HPMCAS): polymer model development, water distribution, and plasticization. Mol Pharm. 2014;11(7):2400–11.

    Article  PubMed  CAS  Google Scholar 

  133. Hassanvand A, et al. Biosynthesis of NanoSilver and its effect on key genes of flavonoids and physicochemical properties of Viola tricolor L. Iran J Sci Technol Trans A Sci. 2021;45(3):805–19.

    Article  Google Scholar 

  134. Gupta J, et al. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B. 2011;115(9):2014–23.

    Article  PubMed  CAS  Google Scholar 

  135. Abedi S, et al. Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environ Sci Pollut Res. 2021;28(3):3136–48.

    Article  CAS  Google Scholar 

  136. Shariatinia Z, Mazloom-Jalali A. Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J Mol Liq. 2019;273:346–67.

    Article  CAS  Google Scholar 

  137. Moghadam AV, et al. New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in datura stramonium; potential species for phytoremediation. J Plant Growth Regul. 2021;41:271.

    Article  Google Scholar 

  138. Salo-Ahen OM, et al. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes. 2021;9(1):71.

    Article  CAS  Google Scholar 

  139. Soleymanzadeh R, et al. Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biol Cracoviensia s Bot. 2020;62:33–42.

    CAS  Google Scholar 

  140. Rog T, Bunker A. Mechanistic understanding from molecular dynamics simulation in pharmaceutical research 1: drug delivery. Front Mol Biosci. 2020;7:371.

    Google Scholar 

  141. Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10(8):3076–89.

    Article  PubMed  CAS  Google Scholar 

  142. De Vivo M, et al. Role of molecular dynamics and related methods in drug discovery. J Med Chem. 2016;59(9):4035–61.

    Article  PubMed  Google Scholar 

  143. Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9(1):1–9.

    Article  Google Scholar 

  144. Oleinikovas V, et al. Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc. 2016;138(43):14257–63.

    Article  PubMed  CAS  Google Scholar 

  145. Moghadam B, et al. Computational evidence of new putative allosteric sites in the acetylcholinesterase receptor. J Mol Gr Model. 2021;107:107981.

    Article  CAS  Google Scholar 

  146. Mandal T, Marson RL, Larson RG. Coarse-grained modeling of crystal growth and polymorphism of a model pharmaceutical molecule. Soft Matter. 2016;12(39):8246–55.

    Article  PubMed  CAS  Google Scholar 

  147. Jha PK, Larson RG. Assessing the efficiency of polymeric excipients by atomistic molecular dynamics simulations. Mol Pharm. 2014;11(5):1676–86.

    Article  PubMed  CAS  Google Scholar 

  148. Rostamizadeh E, et al. Green synthesis of Fe. sub. 2O. sub. 3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley. J Nanostruct Chem. 2020;10(2):125–31.

    Article  CAS  Google Scholar 

  149. Han S. Molecular dynamics simulation of sorbitan monooleate bilayers. Bull Korean Chem Soc. 2013;34(3):946–8.

    Article  CAS  Google Scholar 

  150. Ritwiset A, Krongsuk S, Johns JR. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: a molecular dynamics simulation study. Appl Surf Sci. 2016;380:23–31.

    Article  CAS  Google Scholar 

  151. Myung Y, Yeom S, Han S. A niosomal bilayer of sorbitan monostearate in complex with flavones: a molecular dynamics simulation study. J Liposome Res. 2016;26(4):336–44.

    Article  PubMed  CAS  Google Scholar 

  152. Somjid S, Krongsuk S, Johns JR. Cholesterol concentration effect on the bilayer properties and phase formation of niosome bilayers: a molecular dynamics simulation study. J Mol Liq. 2018;256:591–8.

    Article  CAS  Google Scholar 

  153. Barani M, et al. In silico and in vitro study of magnetic niosomes for gene delivery: the effect of ergosterol and cholesterol. Mater Sci Eng C. 2019;94:234–46.

    Article  CAS  Google Scholar 

  154. Bhosale RR, et al. Current perspectives on novel drug carrier systems and therapies for management of pancreatic cancer: an updated inclusive review. Crit Rev Ther Drug Carrier Syst. 2018;35(3):195.

    Article  PubMed  Google Scholar 

  155. Su C, et al. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019;143:97–114.

    Article  PubMed  CAS  Google Scholar 

  156. Beck TC, et al. Descriptors of cytochrome inhibitors and useful machine learning based methods for the design of safer drugs. Pharmaceuticals. 2021;14(5):472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Dong J, et al. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform. 2018;10(1):1–11.

    Article  Google Scholar 

  158. Xiong G, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49:W5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol. 2014;171(17):3963–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Farouk F, Shamma R. Chemical structure modifications and nano-technology applications for improving ADME-Tox properties, a review. Arch Pharm. 2019;352(2):1800213.

    Article  Google Scholar 

  161. Zolnik BS, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev. 2009;61(6):422–7.

    Article  PubMed  CAS  Google Scholar 

  162. Li M, et al. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J. 2017;19(1):26–42.

    Article  PubMed  CAS  Google Scholar 

  163. Shin HK, Kang Y-M, No KT. Predicting ADME properties of chemicals. Handb Comput Chem. 2017;59:2265–301.

    Article  Google Scholar 

  164. Hernández-Santoyo A, et al. Protein-protein and protein-ligand docking. In: Ogawa T, editor., et al., Protein engineering-technology and application. London: InTechopen; 2013. p. 63–81.

    Google Scholar 

  165. Chen L, et al. Molecular dynamics simulations of the permeation of bisphenol A and pore formation in a lipid membrane. Sci Rep. 2016;6(1):1–7.

    Google Scholar 

  166. Badria FA, et al. Development of provesicular nanodelivery system of curcumin as a safe and effective antiviral agent: statistical optimization, in vitro characterization, and antiviral effectiveness. Molecules. 2020;25(23):5668.

    Article  PubMed Central  CAS  Google Scholar 

  167. Corbeil CR, Williams CI, Labute P. Variability in docking success rates due to dataset preparation. J Comput Aided Mol Des. 2012;26(6):775–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Österberg F, et al. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins Struct Funct Bioinform. 2002;46(1):34–40.

    Article  Google Scholar 

  169. Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol. 1995;245(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  170. Zhao H, Caflisch A. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg Med Chem Lett. 2013;23(20):5721–6.

    Article  PubMed  CAS  Google Scholar 

  171. Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–49.

    Article  PubMed  CAS  Google Scholar 

  172. Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9(2):91–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.

    Article  PubMed Central  CAS  Google Scholar 

  174. Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012;161(2):351–62.

    Article  PubMed  CAS  Google Scholar 

  175. Abd-algaleel SA, et al. Evolution of the computational pharmaceutics approaches in the modeling and prediction of drug payload in lipid and polymeric nanocarriers. Pharmaceuticals. 2021;14(7):645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Yinhua D, et al. The synthesis, characterization, DNA/BSA/HSA interactions, molecular modeling, antibacterial properties, and in vitro cytotoxic activities of novel parent and niosome nano-encapsulated Ho (III) complexes. RSC Adv. 2020;10(39):22891–908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Pawar S, Vavia P. Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin. J Drug Target. 2016;24(1):68–79.

    Article  PubMed  CAS  Google Scholar 

  178. El-Halim SMA, et al. Fabrication of anti-HSV-1 curcumin stabilized nanostructured proniosomal gel: molecular docking studies on thymidine kinase proteins. Sci Pharm. 2020;88(1):9.

    Article  CAS  Google Scholar 

  179. Moulahoum H, et al. Potential effect of carnosine encapsulated niosomes in bovine serum albumin modifications. Int J Biol Macromol. 2019;137:583–91.

    Article  PubMed  CAS  Google Scholar 

  180. Aboumanei MH, Mahmoud AF. Design and development of a proniosomal transdermal drug delivery system of caffeine for management of migraine: in vitro characterization, 131I-radiolabeling and in vivo biodistribution studies. Process Biochem. 2020;97:201–12.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Quazi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human or animals rights

N/A.

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghtaderi, M., Sedaghatnia, K., Bourbour, M. et al. Niosomes: a novel targeted drug delivery system for cancer. Med Oncol 39, 240 (2022). https://doi.org/10.1007/s12032-022-01836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01836-3

Keywords

Navigation