Skip to main content

Advertisement

Log in

H2O2 enhances the anticancer activity of TMPyP4 by ROS-mediated mitochondrial dysfunction and DNA damage

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is one of the diseases that threatens human health and is a leading cause of mortality worldwide. High levels of reactive oxygen species (ROS) have been observed in cancer tissues compared with normal tissues in vivo, and it is not yet known how this influences chemotherapeutic drug action. Cationic porphyrin 5,10,15,20-tetra-(N-methyl-4-pyridyl) porphyrin (TMPyP4) is a photosensitizer used in photodynamic therapy (PDT) and a telomerase inhibitor used in the treatment of telomerase-positive cancer. Here, we investigated the anticancer activity of TMPyP4 in A549 and PANC cells cultured in H2O2. The results showed that compared to TMPyP4 alone, the combination of TMPyP4 and H2O2 exhibited sensitization effects on cell viability and colony formation inhibition and apoptosis in A549 and PANC cells, but had no effect in human normal MIHA cells. Mechanistically, the combination of TMPyP4 and H2O2 activates high ROS and mitochondrial membrane potential in A549 and PANC cells, resulting in intense DNA damage and DNA damage responses. Consequently, compared to TMPyP4 alone, TMPyP4 and H2O2 combined treatment upregulates the expression of BAX, cleaved caspase 3, and p-JNK and downregulates the expression of Bcl-2 in A549 and PANC cells. Taken together, these data suggested that H2O2 enhanced the anticancer activity of TMPyP4-mediated ROS-dependent DNA damage and related apoptotic protein regulation, revealing that the high ROS tumor microenvironment plays an important role in chemotherapeutic drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are real reliable.

Abbreviations

TME:

Tumor microenvironment

ROS:

Reactive oxygen species

PDT:

Photodynamic therapy

TMPyP4:

5,10,15,20-Tetra-(N-methyl-4-pyridyl) porphyrin

PDT:

Photodynamic therapy

MTT:

3‑(4,5‑Dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide

FCM:

Flow cytometry

IF:

Immunofluorescence

References

  1. Weinberg F, Ramnath N, Nagrath D. Reactive oxygen species in the tumor microenvironment: an overview. Cancers. 2019. https://doi.org/10.3390/cancers11081191.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.

    CAS  PubMed  Google Scholar 

  3. Lopez-Lazaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007;252(1):1–8. https://doi.org/10.1016/j.canlet.2006.10.029.

    Article  CAS  PubMed  Google Scholar 

  4. Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med. 2006;41(8):1338–50. https://doi.org/10.1016/j.freeradbiomed.2006.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010;107(19):8788–93. https://doi.org/10.1073/pnas.1003428107.

    Article  PubMed  Google Scholar 

  6. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66(23):3663–73. https://doi.org/10.1007/s00018-009-0099-y.

    Article  CAS  PubMed  Google Scholar 

  7. Okon IS, Coughlan KA, Zhang M, Wang Q, Zou MH. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem. 2015;290(14):9101–10. https://doi.org/10.1074/jbc.M114.631580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60(8):3221–40. https://doi.org/10.1021/acs.jmedchem.6b01243.

    Article  CAS  PubMed  Google Scholar 

  9. Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. 2018;41:1–25. https://doi.org/10.1016/j.drup.2018.11.001.

    Article  PubMed  Google Scholar 

  10. Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37(1):266. https://doi.org/10.1186/s13046-018-0909-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pervaiz S, Olivo M. Art and science of photodynamic therapy. Clin Exp Pharmacol Physiol. 2006;33(5–6):551–6. https://doi.org/10.1111/j.1440-1681.2006.04406.x.

    Article  CAS  PubMed  Google Scholar 

  12. Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract. 2015;24(Suppl 1):14–28. https://doi.org/10.1159/000362416.

    Article  PubMed  Google Scholar 

  13. Debele TA, Peng S, Tsai HC. Drug carrier for photodynamic cancer therapy. Int J Mol Sci. 2015;16(9):22094–136. https://doi.org/10.3390/ijms160922094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pushpan SK, Venkatraman S, Anand VG, Sankar J, Parmeswaran D, Ganesan S, et al. Porphyrins in photodynamic therapy: a search for ideal photosensitizers. Curr Med Chem Anticancer Agents. 2002;2(2):187–207. https://doi.org/10.2174/1568011023354137.

    Article  CAS  PubMed  Google Scholar 

  15. Villanueva A, Caggiari L, Jori G, Milanesi C. Morphological aspects of an experimental tumour photosensitized with a meso-substituted cationic porphyrin. J Photochem Photobiol B. 1994;23(1):49–56. https://doi.org/10.1016/1011-1344(93)06982-9.

    Article  CAS  PubMed  Google Scholar 

  16. Awan MA, Tarin SA. Review of photodynamic therapy. Surgeon. 2006;4(4):231–6. https://doi.org/10.1016/s1479-666x(06)80065-x.

    Article  CAS  PubMed  Google Scholar 

  17. Tada-Oikawa S, Oikawa S, Hirayama J, Hirakawa K, Kawanishi S. DNA damage and apoptosis induced by photosensitization of 5,10,15,20-tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via singlet oxygen generation. Photochem Photobiol. 2009;85(6):1391–9. https://doi.org/10.1111/j.1751-1097.2009.00600.x.

    Article  CAS  PubMed  Google Scholar 

  18. Konieczna N, Romaniuk-Drapala A, Lisiak N, Toton E, Paszel-Jaworska A, Kaczmarek M, et al. Telomerase inhibitor TMPyP4 alters adhesion and migration of breast-cancer cells MCF7 and MDA-MB-231. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20112670.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng XH, Nie X, Liu HY, Fang YM, Zhao Y, Xia LX. TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Sci Rep. 2016;6:26592. https://doi.org/10.1038/srep26592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mikami-Terao Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Yamada H. Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett. 2008;261(2):226–34. https://doi.org/10.1016/j.canlet.2007.11.017.

    Article  CAS  PubMed  Google Scholar 

  21. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6. https://doi.org/10.1158/0008-5472.Can-09-1947.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng XH, Nie X, Fang YM, Zhang ZP, Xiao YN, Mao ZW, et al. A cisplatin derivative tetra-Pt(bpy) as an oncotherapeutic agent for targeting ALT cancer. J Natl Cancer I. 2017. https://doi.org/10.1093/jnci/djx061.

    Article  Google Scholar 

  23. Olive PL, Banath JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1(1):23–9. https://doi.org/10.1038/nprot.2006.5.

    Article  CAS  PubMed  Google Scholar 

  24. Park WH. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion. Oncol Rep. 2018;39(2):860–70. https://doi.org/10.3892/or.2017.6107.

    Article  CAS  PubMed  Google Scholar 

  25. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005;17(2):183–9. https://doi.org/10.1016/j.ceb.2005.02.004.

    Article  CAS  PubMed  Google Scholar 

  26. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–9. https://doi.org/10.1016/j.redox.2016.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang WJ, Mao LF, Lai HL, Wang YW, Jiang ZB, Li W, et al. Dolutegravir derivative inhibits proliferation and induces apoptosis of non-small cell lung cancer cells via calcium signaling pathway. Pharmacol Res. 2020;161:105129. https://doi.org/10.1016/j.phrs.2020.105129.

    Article  CAS  PubMed  Google Scholar 

  28. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9–15. https://doi.org/10.1038/nchembio.1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA. 2003;100(5):2432–7. https://doi.org/10.1073/pnas.0438011100.

    Article  CAS  PubMed  Google Scholar 

  30. Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, et al. Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. J Exp Clin Cancer Res. 2019. https://doi.org/10.1186/s13046-019-1090-6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Zhao Y, Luo W, Chen SA, Lin F, Zhang X, et al. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics. 2020;10(22):10290–308. https://doi.org/10.7150/thno.46728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91. https://doi.org/10.1038/nrd2803.

    Article  CAS  PubMed  Google Scholar 

  33. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. https://doi.org/10.1016/j.redox.2018.101084.

    Article  CAS  PubMed  Google Scholar 

  34. Sies H. Role of reactive oxygen species in biological processes. Klin Wochenschr. 1991;69(21–23):965–8. https://doi.org/10.1007/BF01645140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003;8(2):115–28. https://doi.org/10.1023/a:1022945107762.

    Article  CAS  PubMed  Google Scholar 

  36. Shim HY, Park JH, Paik HD, Nah SY, Kim DS, Han YS. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol Cells. 2007;24(1):95–104.

    CAS  PubMed  Google Scholar 

  37. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 2005;15(1):36–42. https://doi.org/10.1038/sj.cr.7290262.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elsevier (http://webshop.elsevier.com/languageediting/) for its linguistic assistance during the preparation of this manuscript.

Funding

The present study was funded by National Science Foundation of China (Grant No.: 21701194), Wenzhou Basic Medical and Health Technology Project (Grant No.: Y20180177), and Wenzhou Medical University Talent Start-up Fund (Grant No.: QTJ17022) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XHZ, GL, XDZ, and JQC. Methodology and Data analysis: JQC, XXJ, ZS, YM, and JFZ. Writing—original draft preparation: XZ and JC. Funding acquisition and supervision: XHZ, GL, and XDZ.

Corresponding authors

Correspondence to Xiaodan Zhang, Guang Liang or Xiaohui Zheng.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Informed consent

All authors have approved this work. All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Jin, X., Shen, Z. et al. H2O2 enhances the anticancer activity of TMPyP4 by ROS-mediated mitochondrial dysfunction and DNA damage. Med Oncol 38, 59 (2021). https://doi.org/10.1007/s12032-021-01505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01505-x

Keywords

Navigation