Skip to main content

Advertisement

Log in

A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The purpose of thermal ablation is induction of tumor death by means of localized hyperthermia resulting in irreversible cellular damage. Ablative therapies are well-recognized treatment modalities for HCC lesions and are considered standard of care for HCC nodules < 3 cm in diameter in patients not suitable for surgery. Effective lesion treatment rely on complete target volume ablation. Technical limitations are represented by large (> 3 cm) or multicentric nodules as well as complex nodule location and poor lesion conspicuity. Artificial Intelligence (AI) is a general term referred to computational algorithms that can analyze data and perform complex tasks otherwise prerogative of Human Intelligence. AI has a variety of application in percutaneous ablation procedures such as Navigational software, Fusion Imaging, and robot-assisted ablation tools. Those instruments represent relative innovations in the field of Interventional Oncology and promising strategies to overcome actual limitations of ablative therapy in order to increase feasibility and technical results. This work aims to review the principal application of Artificial Intelligence in the percutaneous ablation of primary lesions of the liver with special focus on how AI can impact in the treatment of HCC especially on potential advantages on the drawbacks of the conventional technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Galle PR. Extended abstract: management of liver cancer. Dig Dis. 2016;34:438–9.

    Article  Google Scholar 

  2. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article  Google Scholar 

  3. Kamal A, Elmoety AAA, Rostom YAM, et al. Percutaneous radiofrequency versus microwave ablation for management of hepatocellular carcinoma: a randomized controlled trial. J Gastrointest Oncol. 2019;10:562–71.

    Article  Google Scholar 

  4. Yuan H, Liu F, Li X, Guan Y, Wang M. Transcatheter arterial chemoembolization combined with simultaneous DynaCT-guided radiofrequency ablation in the treatment of solitary large hepatocellular carcinoma. Radiol Med. 2019;124(1):1–7. https://doi.org/10.1007/s11547-018-0932-1.

    Article  PubMed  Google Scholar 

  5. Laganà D, Carrafiello G, Mangini M, et al. Radiofrequency ablation of primary and metastatic lung tumors: preliminary experience with a single center device. Surg Endosc. 2006;20(8):1262–7. https://doi.org/10.1007/s00464-005-0607-6.

    Article  PubMed  Google Scholar 

  6. Lucchina N, Tsetis D, Ierardi AM, et al. Current role of microwave ablation in the treatment of small hepatocellular carcinomas. Ann Gastroenterol. 2016;29(4):460–5. https://doi.org/10.20524/aog.2016.0066.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carrafiello G, Dionigi G, Ierardi AM, et al. Efficacy, safety and effectiveness of image-guided percutaneous microwave ablation in cystic renal lesions Bosniak III or IV after 24 months follow up. Int J Surg. 2013;11(Suppl 1):S30–S3535. https://doi.org/10.1016/S1743-9191(13)60010-2.

    Article  PubMed  Google Scholar 

  8. Carrafiello G, Mangini M, Fontana F, et al. Microwave ablation of lung tumours: single-centre preliminary experience. Radiol Med. 2014;119(1):75–82. https://doi.org/10.1007/s11547-013-0301-z.

    Article  PubMed  Google Scholar 

  9. Ierardi AM, Petrillo M, Coppola A, et al. Percutaneous microwave ablation of renal angiomyolipomas in tuberous sclerosis complex to improve the quality of life: preliminary experience in an Italian center. Radiol Med. 2019;124(3):176–83. https://doi.org/10.1007/s11547-018-0967-3.

    Article  PubMed  Google Scholar 

  10. Feng K, Yan J, Li X, et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol. 2012;57:794–802.

    Article  Google Scholar 

  11. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  Google Scholar 

  12. Letzen B, Wang CJ, Chapiro J. The role of artificial intelligence in interventional oncology: a primer. J Vascular Interv Radiol. 2019;30(38–41):e1.

    Google Scholar 

  13. Kim J, Choi SJ, Lee SH, et al. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics. AJR Am J Roentgenol. 2018;211:1026–34.

    Article  Google Scholar 

  14. Mauri G, Nicosia L, Varano GM, et al. Tips and tricks for a safe and effective image- guided percutaneous renal tumour ablation. Insights Imaging. 2017;8:357–63.

    Article  Google Scholar 

  15. Weiss J, Hoffmann R, Clasen S. MR-guided liver interventions. Top Magn Reson Imaging. 2018;27:163–70.

    Article  Google Scholar 

  16. Mauri G, Vova L, De Beni S, et al. Real-Time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. 2015;38:143–51.

    Article  Google Scholar 

  17. Lee MW, Kim YJ, Park HS, et al. Targeted sonography for small hepatocellular carcinoma discovered by CT or MRI: factors affecting sonographic detection. Am J Roentgenol. 2010;194:W396–400.

    Article  Google Scholar 

  18. Huang Q, Zeng Q, Long Y, et al. Fusion imaging techniques and contrast-enhanced ultrasound for thermal ablation of hepatocellular carcinoma – A prospective randomized controlled trial. Int J Hyperthermia. 2019;36:1207–15.

    PubMed  Google Scholar 

  19. Jo PC, Jang HJ, Burns PN, et al. Integration of contrast-enhanced US into a multimodality approach to imaging of nodules in a cirrhotic liver: how I do it. Radiology. 2017;282:317–31.

    Article  Google Scholar 

  20. Abi-Jaoudeh N, Kruecker J, Kadoury S, et al. Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol. 2012;35:986–98.

    Article  Google Scholar 

  21. Calandri M, Ruggeri V, Carucci P, et al. Thermal ablation with fusion imaging guidance of hepatocellular carcinoma without conspicuity on conventional or contrast-enhanced US: surrounding anatomical landmarks matter. Radiol Med. 2019;124(10):1043–8. https://doi.org/10.1007/s11547-019-01057-1.

    Article  PubMed  Google Scholar 

  22. Lee DH, Lee JM. Recent advances in the image-guided tumor ablation of liver malignancies: radiofrequency ablation with multiple electrodes, real-time multimodality fusion imaging, and new energy sources. Korean J Radiol. 2018;19:545–59.

    Article  Google Scholar 

  23. Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography. 2014;33:227–39.

    Article  Google Scholar 

  24. Ye J, Huang G, Zhang X, et al. Three-dimensional contrast-enhanced ultrasound fusion imaging predicts local tumor progression by evaluating ablative margin of radiofrequency ablation for hepatocellular carcinoma: a preliminary report. Int J Hyperthermia. 2019;36:55–64.

    Article  Google Scholar 

  25. Crocetti L, Lencioni R, Debeni S, See TC, Pina CD, Bartolozzi C. Targeting liver lesions for radiofrequency ablation: an experimental feasibility study using a CT-US fusion imaging system. Invest Radiol. 2008;43:33–9.

    Article  Google Scholar 

  26. Song KD, Lee MW, Rhim H, et al. Fusion imaging-guided radiofrequency ablation for hepatocellular carcinomas not visible on conventional ultrasound. AJR Am J Roentgenol. 2013;201:1141–7.

    Article  Google Scholar 

  27. Iezzi R, Pompili M, Posa A, et al. Combined locoregional treatment of patients with hepatocellular carcinoma: state of the art. World J Gastroenterol. 2016;22:1935–42.

    Article  CAS  Google Scholar 

  28. Huang J, Yan L, Cheng Z, et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann Surg. 2010;252:903–12.

    Article  Google Scholar 

  29. Takahashi S, Kudo M, Chung H, et al. Initial treatment response is essential to improve survival in patients with hepatocellular carcinoma who underwent curative radiofrequency ablation therapy. Oncology. 2007;72(Suppl 1):98–103.

    Article  Google Scholar 

  30. Song KD, Lee MW, Rhim H, et al. Percutaneous US/MRI Fusion-guided Radiofrequency Ablation for Recurrent Subcentimeter Hepatocellular Carcinoma: Technical Feasibility and Therapeutic Outcomes. Radiology. 2018;288:878–86.

    Article  Google Scholar 

  31. Kim YS, Lee WJ, Rhim H, et al. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (%3e 2 and %3c 5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol. 2010;195:758–65.

    Article  Google Scholar 

  32. Li K, Su ZZ, Xu EJ, et al. Improvement of ablative margins by the intraoperative use of CEUS-CT/MR image fusion in hepatocellular carcinoma. BMC Cancer. 2016;16:277.

    Article  Google Scholar 

  33. Ahn SJ, Lee JM, Lee DH, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol. 2017;66:347–54.

    Article  Google Scholar 

  34. Minami Y, Kudo M. Radiofrequency ablation of hepatocellular carcinoma: a literature review. Int J Hepatol. 2011;2011:104685.

    Article  Google Scholar 

  35. Abdullah BJ, Yeong CH, Goh KL, et al. Robotic-assisted thermal ablation of liver tumours. Eur Radiol. 2015;25:246–57.

    Article  Google Scholar 

  36. Carrafiello G, Fontana F, Mangini M, et al. Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): technical note. Radiol Med. 2012;117(8):1386–97. https://doi.org/10.1007/s11547-012-0788-1.

    Article  CAS  PubMed  Google Scholar 

  37. Cazzato RL, Arrigoni F, Boatta E, et al. Percutaneous management of bone metastases: state of the art, interventional strategies and joint position statement of the Italian College of MSK Radiology (ICoMSKR) and the Italian College of Interventional Radiology (ICIR). Radiol Med. 2019;124(1):34–49. https://doi.org/10.1007/s11547-018-0938-8.

    Article  PubMed  Google Scholar 

  38. Lachenmayer A, Tinguely P, Maurer MH, et al. Stereotactic image-guided microwave ablation of hepatocellular carcinoma using a computer-assisted navigation system. Liver Int. 2019;39:1975–85.

    Article  Google Scholar 

  39. Schullian P, Laimer G, Putzer D, et al. Stereotactic radiofrequency ablation of primary liver tumors in the caudate lobe. HPB (Oxford). 2019;22(3):470–8.

    Article  Google Scholar 

  40. Abdullah BJ, Yeong CH, Goh KL, et al. Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience. Eur Radiol. 2014;24:79–85.

    Article  Google Scholar 

  41. Wallach D, Toporek G, Weber S, et al. Comparison of freehand-navigated and aiming device-navigated targeting of liver lesions. Int J Med Robot. 2014;10:35–433.

    Article  CAS  Google Scholar 

  42. Beyer LP, Pregler B, Niessen C, et al. Robot-assisted microwave thermoablation of liver tumors: a single- center experience. Int J Comput Assist Radiol Surg. 2016;11:253–9.

    Article  CAS  Google Scholar 

  43. Mbalisike EC, Vogl TJ, Zangos S, et al. Image-guided microwave thermoablation of hepatic tumours using novel robotic guidance: an early experience. Eur Radiol. 2015;25:454–62.

    Article  Google Scholar 

  44. Xu EJ, Lv SM, Li K, et al. Immediate evaluation and guidance of liver cancer thermal ablation by three-dimensional ultrasound/contrast-enhanced ultrasound fusion imaging. Int J Hyperthermia. 2018;34:870–6.

    Article  Google Scholar 

  45. Lim S, Lee MW, Rhim H, et al. Mistargeting after fusion imaging-guided percutaneous radiofrequency ablation of hepatocellular carcinomas. J Vasc Interv Radiol. 2014;25:307–14.

    Article  Google Scholar 

Download references

Funding

This study was not funded by any funder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Miele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Since human participants are not involvedm informed consent in not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citone, M., Fanelli, F., Falcone, G. et al. A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver. Med Oncol 37, 55 (2020). https://doi.org/10.1007/s12032-020-01380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01380-y

Keywords

Navigation