Skip to main content

Advertisement

Log in

Genetic variations using whole-exome sequencing might predict response for neoadjuvant chemoradiotherapy in locally advanced rectal cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

A good pathologic response to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC) is associated with a better prognosis. However, there is no effective method to predict CRT response in LARC patients. Therefore, this study used whole-exome sequencing (WES) to identify novel biomarker predicting CRT benefit in LARC. Two independent tumor tissue sets were used to evaluate the genetic differences between the good CRT response group (15 patients achieved a pathologic complete response (pCR)) and the poor CRT response group (15 patients with pathologic stage III). After applying WES to the discovery set of 30 patients, additional samples (n = 67) were genotyped for candidate variants using TaqMan or Sanger sequencing for validation. Overall, this study included a total of 97 LARC patients. In the discovery and validation set, there was no known genetic mutation to predict response between two groups, while five candidate variants (BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were found to be significantly associated with pCR. In the dominant model, the GC/CC genotype of DLC1 rs3816748 (p = 0.032), AC/CC genotype of DNAH14 rs3105571 (p = 0.009), and TT genotype of RAET1 rs912565 (p < 0.0001) were associated with a higher pCR rate. In the recessive model, BCL2L10 rs2231292 (p = 0.036) and ITIH5 rs3824658 (p = 0.003) were significantly associated with pCR. In the co-dominant model, 4 candidate variants (DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were significantly correlated with pCR. However, none of the candidate variants was associated with relapse-free or overall survival. The present results suggest that genetic variations of the BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565 genes can be used as biomarkers predicting the CRT response for patients with LARC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Park IJ, You YN, Agarwal A, Skibber JM, Rodriguez-Bigas MA, Eng C, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol. 2012;30(15):1770–6. https://doi.org/10.1200/jco.2011.39.7901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maas M, Nelemans PJ, Valentini V, Das P, Rodel C, Kuo LJ, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11(9):835–44. https://doi.org/10.1016/s1470-2045(10)70172-8.

    Article  PubMed  Google Scholar 

  3. Molinari C, Matteucci F, Caroli P, Passardi A. Biomarkers and molecular imaging as predictors of response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Clin Colorectal Cancer. 2015;14(4):227–38. https://doi.org/10.1016/j.clcc.2015.05.014.

    Article  PubMed  Google Scholar 

  4. Kim CW, Yu CS, Yang SS, Kim KH, Yoon YS, Yoon SN, et al. Clinical significance of pre- to post-chemoradiotherapy s-CEA reduction ratio in rectal cancer patients treated with preoperative chemoradiotherapy and curative resection. Ann Surg Oncol. 2011;18(12):3271–7. https://doi.org/10.1245/s10434-011-1740-1.

    Article  PubMed  Google Scholar 

  5. Kim NK, Hur H. New perspectives on predictive biomarkers of tumor response and their clinical application in preoperative chemoradiation therapy for rectal cancer. Yonsei Med J. 2015;56(6):1461–77. https://doi.org/10.3349/ymj.2015.56.6.1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45. https://doi.org/10.1038/nbt1486.

    Article  CAS  PubMed  Google Scholar 

  7. Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJ, Koudijs MJ, et al. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res. 2015;17(1):134. https://doi.org/10.1186/s13058-015-0642-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park K, Choi MK, Jung HH, Do IG, Lee KH, Ahn T, et al. Molecular characterization of patients with pathologic complete response or early failure after neoadjuvant chemotherapy for locally advanced breast cancer using next generation sequencing and nCounter assay. Oncotarget. 2015;6(27):24499–510. https://doi.org/10.18632/oncotarget.4119.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crumley SM, Pepper KL, Phan AT, Olsen RJ, Schwartz MR, Portier BP. Next-generation sequencing of matched primary and metastatic rectal adenocarcinomas demonstrates minimal mutation gain and concordance to colonic adenocarcinomas. Arch Pathol Lab Med. 2016;140(6):529–35. https://doi.org/10.5858/arpa.2015-0261-SA.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–4. https://doi.org/10.1093/bioinformatics/btv098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. https://doi.org/10.1093/nar/gkq603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. https://doi.org/10.1038/nbt.1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ha YJ, Tak KH, Kim CW, Roh SA, Choi EK, Cho DH, et al. PSMB8 as a candidate marker of responsiveness to preoperative radiation therapy in rectal cancer patients. Int J Radiat Oncol Biol Phys. 2017;98(5):1164–73. https://doi.org/10.1016/j.ijrobp.2017.03.023.

    Article  CAS  PubMed  Google Scholar 

  15. Carames C, Cristobal I, Moreno V, del Puerto L, Moreno I, Rodriguez M, et al. MicroRNA-21 predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer. Int J Colorectal Dis. 2015;30(7):899–906. https://doi.org/10.1007/s00384-015-2231-9.

    Article  PubMed  Google Scholar 

  16. Dayde D, Tanaka I, Jain R, Tai MC, Taguchi A. Predictive and prognostic molecular biomarkers for response to neoadjuvant chemoradiation in rectal cancer. Int J Mol Sci. 2017;18(3). https://doi.org/10.3390/ijms18030573.

    Article  CAS  PubMed Central  Google Scholar 

  17. Kim JC, Ha YJ, Roh SA, Cho DH, Choi EY, Kim TW, et al. Novel single-nucleotide polymorphism markers predictive of pathologic response to preoperative chemoradiation therapy in rectal cancer patients. Int J Radiat Oncol Biol Phys. 2013;86(2):350–7. https://doi.org/10.1016/j.ijrobp.2012.12.018.

    Article  CAS  PubMed  Google Scholar 

  18. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61. https://doi.org/10.1038/nature07086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dreussi E, Pucciarelli S, De Paoli A, Polesel J, Canzonieri V, Agostini M, et al. Predictive role of microRNA-related genetic polymorphisms in the pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Oncotarget. 2016;7(15):19781–93. https://doi.org/10.18632/oncotarget.7757.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ullmannova V, Popescu NC. Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors. Int J Oncol. 2006;29(5):1127–32.

    CAS  PubMed  Google Scholar 

  21. Xie CR, Sun HG, Sun Y, Zhao WX, Zhang S, Wang XM, et al. Significance of genetic variants in DLC1 and their association with hepatocellular carcinoma. Mol Med Rep. 2015;12(3):4203–9. https://doi.org/10.3892/mmr.2015.3970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng H, Long F, Wu Z, Chu Y, Li J, Kuai R, et al. Downregulation of DLC-1 gene by promoter methylation during primary colorectal cancer progression. Biomed Res Int. 2013;2013:181384. https://doi.org/10.1155/2013/181384.

    Article  CAS  PubMed  Google Scholar 

  23. Pazour GJ, Agrin N, Walker BL, Witman GB. Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet. 2006;43(1):62–73. https://doi.org/10.1136/jmg.2005.033001.

    Article  CAS  PubMed  Google Scholar 

  24. Chang H, Rha SY, Jeung HC, Jung JJ, Kim TS, Kwon HJ, et al. Identification of genes related to a synergistic effect of taxane and suberoylanilide hydroxamic acid combination treatment in gastric cancer cells. J Cancer Res Clin Oncol. 2010;136(12):1901–13. https://doi.org/10.1007/s00432-010-0849-0.

    Article  CAS  PubMed  Google Scholar 

  25. Antoun A, Vekaria D, Salama RA, Pratt G, Jobson S, Cook M, et al. The genotype of RAET1L (ULBP6), a ligand for human NKG2D (KLRK1), markedly influences the clinical outcome of allogeneic stem cell transplantation. Br J Haematol. 2012;159(5):589–98. https://doi.org/10.1111/bjh.12072.

    Article  CAS  PubMed  Google Scholar 

  26. Eagle RA, Traherne JA, Hair JR, Jafferji I, Trowsdale J. ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol. 2009;39(11):3207–16. https://doi.org/10.1002/eji.200939502.

    Article  CAS  PubMed  Google Scholar 

  27. Mikata R, Fukai K, Imazeki F, Arai M, Fujiwara K, Yonemitsu Y, et al. BCL2L10 is frequently silenced by promoter hypermethylation in gastric cancer. Oncol Rep. 2010;23(6):1701–8.

    CAS  PubMed  Google Scholar 

  28. Kobayashi H, Gotoh J, Hirashima Y, Fujie M, Sugino D, Terao T. Inhibitory effect of a conjugate between human urokinase and urinary trypsin inhibitor on tumor cell invasion in vitro. J Biol Chem. 1995;270(14):8361–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rose M, Gaisa NT, Antony P, Fiedler D, Heidenreich A, Otto W, et al. Epigenetic inactivation of ITIH5 promotes bladder cancer progression and predicts early relapse of pT1 high-grade urothelial tumours. Carcinogenesis. 2014;35(3):727–36. https://doi.org/10.1093/carcin/bgt375.

    Article  CAS  PubMed  Google Scholar 

  30. Kloten V, Rose M, Kaspar S, von Stillfried S, Knuchel R, Dahl E. Epigenetic inactivation of the novel candidate tumor suppressor gene ITIH5 in colon cancer predicts unfavorable overall survival in the CpG island methylator phenotype. Epigenetics. 2014;9(9):1290–301. https://doi.org/10.4161/epi.32089.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Veeck J, Chorovicer M, Naami A, Breuer E, Zafrakas M, Bektas N, et al. The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene. 2008;27(6):865–76. https://doi.org/10.1038/sj.onc.1210669.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2014R1A5A2009242) and Korean Cancer Foundation (K20170519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Gwang Kim.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Kyungpook National University Hospital Institutional Review Board (IRB).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, I.H., Kang, K., Kang, B.W. et al. Genetic variations using whole-exome sequencing might predict response for neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Med Oncol 35, 145 (2018). https://doi.org/10.1007/s12032-018-1202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1202-8

Keywords

Navigation