Skip to main content

Advertisement

Log in

Efficacy of neratinib in the treatment of HER2/neu-amplified epithelial ovarian carcinoma in vitro and in vivo

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Epithelial ovarian carcinoma is the most lethal of gynecologic malignancies. There is a need to optimize the currently available treatment strategies and to urgently develop novel therapeutic agents against chemotherapy-resistant disease. The objective of our study was to evaluate neratinib’s preclinical efficacy in treating HER2-amplified ovarian cancer. Neratinib’s efficacy in treating HER2-amplified ovarian cancer was studied in vitro utilizing six primary tumor cell lines with differential HER2/neu expression. Flow cytometry was utilized to assess IC50, cell signaling changes, and cell cycle distribution. Neratinib’s in vivo efficacy was evaluated in HER2-amplified epithelial ovarian carcinoma xenografts. Three of six (50%) ovarian cancer cell lines were HER2/neu-amplified. Neratinib showed significantly higher efficacy in treating HER2/neu-amplified cell lines when compared to the non-HER2/neu-amplified tumor cell lines (mean ± SEM IC50:0.010 μM ± 0.0003 vs. 0.076 μM ± 0.005 p < 0.0001). Neratinib treatment significantly decreased the phosphorylation of the transcription factor S6, leading to arrest of the cell cycle in G0/G1 phase. Neratinib prolonged survival in mice harboring HER2-amplified epithelial ovarian carcinoma xenografts (p = 0.003). Neratinib inhibits proliferation, signaling, cell cycle progression and tumor growth of HER2-amplified epithelial ovarian carcinoma in vitro. Neratinib inhibits xenograft growth and improves overall survival in HER2/neu-amplified ovarian cancer in vivo. Clinical trials are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi:10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  2. Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer. 2009;9(3):167–81. doi:10.1038/nrc2583.

    Article  CAS  PubMed  Google Scholar 

  3. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res. 2013;19(5):961–8. doi:10.1158/1078-0432.ccr-12-2243.

    Article  CAS  PubMed  Google Scholar 

  4. Stalberg K, Crona J, Razmara M, Taslica D, Skogseid B, Stalberg P. An integrative genomic analysis of formalin fixed paraffin-embedded archived serous ovarian carcinoma comparing long-term and short-term survivors. Int J Gynecol Cancer. 2016. doi:10.1097/igc.0000000000000721.

    PubMed  Google Scholar 

  5. Magdalena K, Monika Z, Adam G, Magdalena R, Marzena L, Wojciech B, et al. Detection of somatic BRCA1/2 mutations in ovarian cancer—next-generation sequencing analysis of 100 cases. Cancer Med. 2016;. doi:10.1002/cam4.748.

    Google Scholar 

  6. Cohen RB. Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat Rev. 2014;40(4):567–77. doi:10.1016/j.ctrv.2013.10.002.

    Article  CAS  PubMed  Google Scholar 

  7. English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther. 2013;17(2):85–99. doi:10.1007/s40291-013-0024-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tuefferd M, Couturier J, Penault-Llorca F, Vincent-Salomon A, Broet P, Guastalla JP, et al. HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoS ONE. 2007;2(11):e1138. doi:10.1371/journal.pone.0001138.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wright C, Angus B, Nicholson S, Sainsbury JR, Cairns J, Gullick WJ, et al. Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res. 1989;49(8):2087–90.

    CAS  PubMed  Google Scholar 

  10. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 1990;50(13):4087–91.

    CAS  PubMed  Google Scholar 

  11. Santin AD, Bellone S, Siegel ER, Palmieri M, Thomas M, Cannon MJ, et al. Racial differences in the overexpression of epidermal growth factor type II receptor (HER2/neu): a major prognostic indicator in uterine serous papillary cancer. Am J Obstet Gynecol. 2005;192(3):813–8. doi:10.1016/j.ajog.2004.10.605.

    Article  CAS  PubMed  Google Scholar 

  12. Schwab CL, English DP, Roque DM, Bellone S, Lopez S, Cocco E, et al. Neratinib shows efficacy in the treatment of HER2/neu amplified uterine serous carcinoma in vitro and in vivo. Gynecol Oncol. 2014;135(1):142–8. doi:10.1016/j.ygyno.2014.08.006.

    Article  CAS  PubMed  Google Scholar 

  13. English DP, Bellone S, Cocco E, Bortolomai I, Pecorelli S, Lopez S, et al. Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2). Am J Obstet Gynecol. 2013;209(5):465.e1–9. doi:10.1016/j.ajog.2013.07.020.

    Article  CAS  Google Scholar 

  14. El-Sahwi K, Bellone S, Cocco E, Cargnelutti M, Casagrande F, Bellone M, et al. In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br J Cancer. 2010;102(1):134–43. doi:10.1038/sj.bjc.6605448.

    Article  CAS  PubMed  Google Scholar 

  15. Schwab CL, English DP, Black J, Bellone S, Lopez S, Cocco E, et al. Neratinib shows efficacy in the treatment of HER2 amplified carcinosarcoma in vitro and in vivo. Gynecol Oncol. 2015;139(1):112–7. doi:10.1016/j.ygyno.2015.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buza N, English DP, Santin AD, Hui P. Toward standard HER2 testing of endometrial serous carcinoma: 4-year experience at a large academic center and recommendations for clinical practice. Mod Pathol. 2013;26(12):1605–12. doi:10.1038/modpathol.2013.113.

    Article  CAS  PubMed  Google Scholar 

  17. English DP, Bellone S, Schwab CL, Bortolomai I, Bonazzoli E, Cocco E, et al. T-DM1, a novel antibody-drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo. Cancer Med. 2014;3(5):1256–65. doi:10.1002/cam4.274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–65. doi:10.1158/0008-5472.can-03-2868.

    Article  CAS  PubMed  Google Scholar 

  19. Ocana A, Amir E, Seruga B, Martin M, Pandiella A. The evolving landscape of protein kinases in breast cancer: clinical implications. Cancer Treat Rev. 2013;39(1):68–76. doi:10.1016/j.ctrv.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  20. Engel RH, Kaklamani VG. HER2-positive breast cancer: current and future treatment strategies. Drugs. 2007;67(9):1329–41.

    Article  CAS  PubMed  Google Scholar 

  21. Bartsch R, Wenzel C, Zielinski CC, Steger GG. HER-2-positive breast cancer: hope beyond trastuzumab. BioDrugs. 2007;21(2):69–77.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Guo M, Zhang L, Xu T, Wang L, Xu G. Biomarker triplet NAMPT/VEGF/HER2 as a de novo detection panel for the diagnosis and prognosis of human breast cancer. Oncol Rep. 2016;35(1):454–62. doi:10.3892/or.2015.4391.

    CAS  PubMed  Google Scholar 

  23. Mar N, Vredenburgh JJ, Wasser JS. Targeting HER2 in the treatment of non-small cell lung cancer. Lung Cancer. 2015;87(3):220–5. doi:10.1016/j.lungcan.2014.12.018.

    Article  PubMed  Google Scholar 

  24. Serrano-Olvera A, Duenas-Gonzalez A, Gallardo-Rincon D, Candelaria M, De la Garza-Salazar J. Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer. Cancer Treat Rev. 2006;32(3):180–90. doi:10.1016/j.ctrv.2006.01.001.

    Article  CAS  PubMed  Google Scholar 

  25. Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Bock JE, Glud E, et al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer. 2003;98(1):66–73. doi:10.1002/cncr.11476.

    Article  CAS  PubMed  Google Scholar 

  26. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  27. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol. 2005;23(11):2445–59. doi:10.1200/jco.2005.11.890.

    Article  CAS  PubMed  Google Scholar 

  28. Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol. 2014;32(33):3744–52. doi:10.1200/jco.2014.55.5730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12(3):236–44. doi:10.1016/s1470-2045(11)70033-x.

    Article  CAS  PubMed  Google Scholar 

  30. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83. doi:10.1056/NEJMoa0910383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan A, Delaloge S, Holmes FA, Moy B, Iwata H, Harvey VJ, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17(3):367–77. doi:10.1016/s1470-2045(15)00551-3.

    Article  CAS  PubMed  Google Scholar 

  32. Goldhirsch A, Gelber RD, Piccart-Gebhart MJ, de Azambuja E, Procter M, Suter TM, et al. 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet. 2013;382(9897):1021–8. doi:10.1016/s0140-6736(13)61094-6.

    Article  CAS  PubMed  Google Scholar 

  33. Jelovac D, Emens LA. HER2-directed therapy for metastatic breast cancer. Oncology. 2013;27(3):166–75.

    PubMed  Google Scholar 

  34. Lheureux S, Krieger S, Weber B, Pautier P, Fabbro M, Selle F, et al. Expected benefits of topotecan combined with lapatinib in recurrent ovarian cancer according to biological profile: a phase 2 trial. Int J Gynecol Cancer. 2012;22(9):1483–8. doi:10.1097/IGC.0b013e31826d1438.

    PubMed  Google Scholar 

  35. Teplinsky E, Muggia F. Targeting HER2 in ovarian and uterine cancers: challenges and future directions. Gynecol Oncol. 2014;135(2):364–70. doi:10.1016/j.ygyno.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  36. Chow LW, Xu B, Gupta S, Freyman A, Zhao Y, Abbas R, et al. Combination neratinib (HKI-272) and paclitaxel therapy in patients with HER2-positive metastatic breast cancer. Br J Cancer. 2013;108(10):1985–93. doi:10.1038/bjc.2013.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI, et al. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res. 2009;15(7):2552–8. doi:10.1158/1078-0432.ccr-08-1978.

    Article  CAS  PubMed  Google Scholar 

  38. Burstein HJ, Sun Y, Dirix LY, Jiang Z, Paridaens R, Tan AR, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28(8):1301–7. doi:10.1200/jco.2009.25.8707.

    Article  CAS  PubMed  Google Scholar 

  39. Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8(6):215. doi:10.1186/bcr1612.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martin M, Bonneterre J, Geyer CE Jr, Ito Y, Ro J, Lang I, et al. A phase two randomised trial of neratinib monotherapy versus lapatinib plus capecitabine combination therapy in patients with HER2+ advanced breast cancer. Eur J Cancer. 2013;49(18):3763–72. doi:10.1016/j.ejca.2013.07.142.

    Article  CAS  PubMed  Google Scholar 

  41. Carlson R. I-SPY 2 trial: neoadjuvant neratinib improves pathologic complete response in HR-/HER2+ breast cancer. Oncology Times. 2014;36(10):25–6.

    Article  Google Scholar 

  42. Park JW, Liu MC, Yee D, Yau C, van ‘t Veer LJ, Symmans WF, et al. Adaptive randomization of neratinib in early breast cancer. N Engl J Med. 2016;375(1):11–22. doi:10.1056/NEJMoa1513750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Canonici A, Gijsen M, Mullooly M, Bennett R, Bouguern N, Pedersen K, et al. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer. Oncotarget. 2013;4(10):1592–605. doi:10.18632/oncotarget.1148.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Awada A, Dirix L, Manso Sanchez L, Xu B, Luu T, Dieras V, et al. Safety and efficacy of neratinib (HKI-272) plus vinorelbine in the treatment of patients with ErbB2-positive metastatic breast cancer pretreated with anti-HER2 therapy. Ann Oncol. 2013;24(1):109–16. doi:10.1093/annonc/mds284.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by R01 CA154460-01 and U01 CA176067-01A1 grants from NIH, and grants from the Deborah Bunn Alley Foundation, the Tina Brozman Foundation, the Discovery to Cure Foundation and the Guido Berlucchi Foundation to A.D. Santin. This investigation was also supported by NIH Research Grant CA-16359 from the NCI to A.D. Santin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D. Santin.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of mice were followed. Ethical approval for involving mice in our study was obtained from Yale Institutional Animal Care and Use Committee (IACUC) which granted the ethical approval after review. The policies set forth by the IACUC at Yale University were followed while housing and treating the mice.

Human and animal rights

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menderes, G., Bonazzoli, E., Bellone, S. et al. Efficacy of neratinib in the treatment of HER2/neu-amplified epithelial ovarian carcinoma in vitro and in vivo. Med Oncol 34, 91 (2017). https://doi.org/10.1007/s12032-017-0956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0956-8

Keywords

Navigation