Skip to main content
Log in

Targeting TDO in cancer immunotherapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Tryptophan-2,3-dioxygenase (TDO) is a homotetrameric heme-containing protein catalyzing the initial step in the kynurenine pathway, which oxidates the 2,3-double bond of the indole ring in l-tryptophan and catalyzes it into kynurenine (KYN). The upregulation of TDO results in a decrease in tryptophan and the accumulation of KYN and its metabolites. These metabolites can affect the proliferation of T cells. Increasing evidence demonstrates that TDO is a promising therapeutic target in the anti-tumor process. Despite its growing popularity, there are only a few reviews focusing on TDO in tumors. Hence, we herein review the biological features and regulatory mechanisms of TDO. Additionally, we focus on the role of TDO in the anti-tumor immune response in different tumors. Finally, we also provide our viewpoint regarding the future developmental directions of TDO in cancer research, especially in relation to the development and application of TDO inhibitors as novel cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Phillips RS. Structure, mechanism, and substrate specificity of kynureninase. J Biochim Biophys Acta. 2011;1814(1814):1481–8. doi:10.1016/j.bbapap.2010.12.003.

    Article  CAS  Google Scholar 

  2. Hayaishi O. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. Recent Adv Tryptophan Res. 1996;. doi:10.1007/978-1-4613-0381-7_45.

    Google Scholar 

  3. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. J Immunology. 2002;107(4):452–60. doi:10.1046/j.1365-2567.2002.01526.x.

    Article  CAS  Google Scholar 

  4. Friberg M, Jennings R, Alsarraj M, Dessureault S, Cantor A, Extermann M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer. 2002;101(2):151–5. doi:10.1002/ijc.10645.

    Article  CAS  PubMed  Google Scholar 

  5. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185(6):3190–8. doi:10.4049/jimmunol.0903670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. J Nat. 2011;478(7368):197–203. doi:10.1038/nature10491.

    Article  CAS  Google Scholar 

  7. Kotake Y, Masayama IZ. Uber den Mechanismus der kynureninbildung aus tryptophan. J Z Physiol Chem. 1936;243:237–44.

    Article  CAS  Google Scholar 

  8. Hu X, Bao Z, Hu J, Shao M, Zhang L, Bi K, Zhan A, Huang X. Cloning and characterization of tryptophan-2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). J Aquac Res. 2006;37:1187–94.

    Article  CAS  Google Scholar 

  9. Mukabayire O, Cornel AJ, Dotson EM, Collins FH, Besansky NJ. The tryptophan oxygenase gene of Anopheles gambiae. J Insect Biochem Mol Biol. 1996;26:525–8. doi:10.1016/S0965-1748(96)00026-4.

    Article  CAS  Google Scholar 

  10. Lorenzen MD, Brown SJ, Denell RE, Beeman RW. Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monoxygenase. J Genet. 2002;160:225–34.

    CAS  Google Scholar 

  11. Fabrick JA, Kanost MR, Baker JE. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. J Insect Sci. 2004;4(1):103–8. doi:10.1673/031.004.1501.

    Article  Google Scholar 

  12. Searles LL, Voelker RA. Molecular characterization of the drosophila vermilion locus and its suppressible alleles. J Proc Natl Acad Sci USA. 1986;83:404–8.

    Article  CAS  Google Scholar 

  13. Tshimura Y, Nozaki M, Hayaishi O. The oxygenated form of l-tryptophan 2,3-dioxygenase as reaction intermediate. J Biol Chem. 1970;245(14):3593–602.

    Google Scholar 

  14. Iwamoto Y, Lee IS, Tsubaki M, Kido R. Tryptophan-2, 3-dioxygenase in Saccharomyces cerevisiae. Can J Microbiol. 1995;141:19–26.

    Article  Google Scholar 

  15. Matsumura M, Osada K, Aiba S. L-tryptophan-2, 3-dioxygenase of a moderate thermophile, Bacillus brevis, purification, properties and a substrate-mediated stabilization of the quaternary structure. Biochim Biophys Acta. 1984;786:9–17.

    Article  CAS  PubMed  Google Scholar 

  16. Ball HJ, Jusof FF, Bakmiwewa SM, Hunt NH, Yuasa HJ. Tryptophan-catabolizing enzymes-party of three. J Front Immunol. 2014;5(485):1–10. doi:10.3389/fimmu.2014.00485.

    CAS  Google Scholar 

  17. Comings DE, Muhleman D, Dietz G, Sherman M, Forest GL. Sequence of human tryptophan 2, 3-dioxygenase (TDO2): presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat. J Genomics. 1995;29(2):390–6. doi:10.1006/geno.1995.9990.

    Article  CAS  Google Scholar 

  18. Gongkai JIAO, Xiao-yan KE, Lu CHENG, Ying ZHOU, Ping CHEN, Bei-li SUN, et al. Positive association between tryptophan-2, 3-dioxygenase gene polymorphism and autistic disorder in Chinese Han population. Chin Med J. 2010;123(2):82.

    Google Scholar 

  19. Comings DE, Gade R, Muhleman D, Chiu C, Wu S, To M, et al. Exon and intron variants in the human tryptophan 2, 3 dioxygenase gene: potential association with Tourette syndrome, substance abuse and other disorders. J Pharmacogenet Genomics. 1996;6(4):307–18. doi:10.1097/00008571-199608000-00004.

    Article  CAS  Google Scholar 

  20. Britan A, Maffre V, Tone S, Vet JR. Quantitative and spatial differences in the expression of tryptophan metabolizing enzymes in mouse epididymis. J Cell Tissue Res. 2006;324(2):301–10. doi:10.1007/s00441-005-0151-7.

    Article  CAS  Google Scholar 

  21. Minatogawa Y, Suzuki S, Ando Y, Tone S, Takikawa O. Tryptophan pyrrole ring cleavage enzymes in placenta. J Adv Exp Med Biol. 2003;527:425–34. doi:10.1007/978-1-4615-0135-0_50.

    Article  CAS  Google Scholar 

  22. Haber R, Bessette D, Hulihan-Giblin B, Durcan MJ, Goldman D. Identification of tryptophan-2, 3-dioxygenase RNA in rodent brain. J Neurochem. 1993;60:1159–62.

    Article  CAS  PubMed  Google Scholar 

  23. Doherty LF, Kwon HE, Taylor HS. Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling.J. Am J Physiol Endocrinol Metab. 2011;300(1):86–93. doi:10.1152/ajpendo.00439.2010.

    Article  Google Scholar 

  24. Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, et al. Expression of tryptophan-2, 3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One. 2013;8:e59749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller C, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2, 3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. J Neurobiol Dis. 2004;15(3):618–29. doi:10.1016/j.nbd.2003.12.015.

    Article  CAS  Google Scholar 

  26. Yu CP, Pan ZZ, Luo DY. TDO as a therapeutic target in brain diseases J. Metab Brain Dis. 2016;31(4):737–47. doi:10.1007/s11011-016-9824-z.

    Article  CAS  PubMed  Google Scholar 

  27. Mørland J, Stowell L, Gjerde H. Ethanol increases rat liver tryptophan oxygenase: evidence for corticosterone mediation. Alcohol. 1985;2:255–9. doi:10.1016/0741-8329(85)90055-2.

    Article  PubMed  Google Scholar 

  28. Badawy AA. Tryptophan metabolism in alcoholism. Nutr Res Rev. 2002;15:123–52. doi:10.1079/NRR200133.

    Article  CAS  PubMed  Google Scholar 

  29. Mehler AH, Knox WE. The conversion of tryptophan to Kynurenine in liver II. The enzymatic hydrolysis of formylkynurenine. J Biol Chem. 1950;187(1):431–8.

    CAS  PubMed  Google Scholar 

  30. Knox WE, Mehler AH. The adaptive increase of the tryptophan peroxidase-oxidase system of liver. J Sci. 1951;113(2931):237–8.

    Article  CAS  Google Scholar 

  31. Danesch U, Gloss B, Schmid W, Schütz G, Schüle R, Renkawitz R. Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. Embo J. 1987;6(3):625–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren S, Correia MA. Heme: a regulator of rat hepatic tryptophan 2,3-dioxygenase? J Arch Biochem Biophys. 2000;377(1):195–203. doi:10.1006/abbi.2000.1755.

    Article  CAS  Google Scholar 

  33. Nakamura T, Shinno HI, Chihara A. Insulin and glucagon as a new regulator system for tryptophan oxygenase activity demonstrated in primary cultured rat hepatocytes. J Biol Chem. 1980;255:7533–5.

    CAS  PubMed  Google Scholar 

  34. Braidman IP, Rose DP. Effects of sex hormones on three glucocorticoid inducible enzymes concerned with amino acid metabolism in rat liver. J Endocrinol. 1971;89:1250–5.

    Article  CAS  Google Scholar 

  35. Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. J Proc Natl Acad Sci USA. 1971;109(7):2497–502.

    Article  Google Scholar 

  36. D’Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, et al. TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. J Cancer Res. 2015;75(21):4651–64. doi:10.1158/0008-5472.CAN-15-2011.

    Article  Google Scholar 

  37. Hsu Ya-Ling, Hung Jen-Yu, Chiang Shin-Yi, Jian Shu-Fang, Cheng-Ying Wu, Lin Yi-Shiuan, et al. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis. J Oncotarget. 2014;7(19):27584–98. doi:10.18632/oncotarget.8488.

    Google Scholar 

  38. Chen IC, Lee KH, Hsu YH, et al. Expression pattern and clinicopathological relevance of the indoleamine 2,3-dioxygenase 1/tryptophan 2,3-dioxygenase protein in colorectal cancer. J Dis Markers. 2016;2016(3):1–9. doi:10.1155/2016/8169724.

    Google Scholar 

  39. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C. Tryptophan catabolism generates autoimmune- preventive regulatory T cells. Transp Immunol. 2006;17(1):58–60. doi:10.1016/j.trim.2006.09.017.

    Article  CAS  Google Scholar 

  40. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42. doi:10.1016/j.immuni.2005.03.013.

    Article  CAS  PubMed  Google Scholar 

  41. Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. J. Nat Rev Immunol. 2007;7(10):817–23. doi:10.1038/nri2163.

    Article  CAS  Google Scholar 

  42. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Taylor PA, Mellor AL, Munn DH, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood. 2008;111(6):3257–65. doi:10.1182/blood-2007-06-096081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203. doi:10.1038/nature10491.

    Article  CAS  PubMed  Google Scholar 

  44. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31(5):787. doi:10.1182/blood-2007-06-09608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayashi T, Raz E. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci. 2007;104(47):18619–24. doi:10.1073/pnas.0709261104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176(11):6752–61. doi:10.4049/jimmunol.176.11.6752.

    Article  CAS  PubMed  Google Scholar 

  47. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9(10):1069–77. doi:10.1038/sj.cdd.4401073.

    Article  CAS  PubMed  Google Scholar 

  48. Weber WP, Feder-Mengus C, Chiarugi A, Rosenthal R, Reschner A, Schumacher R, et al. Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur J Immunol. 2006;36(2):296–304. doi:10.1002/eji.200535616.

    Article  CAS  PubMed  Google Scholar 

  49. Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. J Sci Transl Med. 2010;2(32):32ra36. doi:10.1126/scitranslmed.3000632.

    Google Scholar 

  50. Zaher SS, Germain C, Fu H, Larkin DF, George AJ. 3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Invest Ophthalmol Vis Sci. 2011;52(5):2640–8. doi:10.1167/iovs.10-5793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mi YK, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 2005;19(17):1951. doi:10.1101/gad.1331805.

    Article  Google Scholar 

  52. Sahm F, Oezen I, Opitz CA, Radlwimmer B, von Deimling A, Ahrendt T, et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. J Cancer Res. 2013;73(11):3225–34. doi:10.1158/0008-5472.

    Article  CAS  Google Scholar 

  53. Di Serio C, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S, et al. Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)-1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol. 2005;25(6):981–93. doi:10.1007/s10571-005-8469-y.

    Article  PubMed  Google Scholar 

  54. Bresjanac M, Antauer G. Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRalpha1 as well as GDNF in vivo. J Exp Neurol. 2000;164(1):53–9. doi:10.1006/exnr.2000.7416.

    Article  CAS  Google Scholar 

  55. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC, et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11(3):312–9. doi:10.1038/nm1196.

    Article  CAS  PubMed  Google Scholar 

  56. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54. doi:10.1172/JCI31178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74. doi:10.1038/nm934.

    Article  CAS  PubMed  Google Scholar 

  58. Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396(1):203–13.

    Article  CAS  PubMed  Google Scholar 

  59. Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007;67(67):7082–7. doi:10.1158/0008-5472.

    Article  CAS  PubMed  Google Scholar 

  60. Löb S, Königsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: Can we see the wood for the trees? Nat Rev Cancer. 2009;9(6):445. doi:10.1038/nrc2639.

    Article  PubMed  Google Scholar 

  61. Soliman H, Rawal B, Fulp J, Lee JH, Lopez A, Bui MM, et al. Analysis of indoleamine 2-3 dioxygenase (IDO1) expression in breast cancer tissue by immunohistochemistry. Cancer Immunol Immunother. 2013;62(5):829–37. doi:10.1007/s00262-013-1393-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Astigiano S, Morandi B, Costa R, Mastracci L, D’Agostino A, Ratto GB, Melioli G, Frumento G. Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. J Neoplasia. 2005;7(4):390–6. doi:10.1593/neo.04658.

    Article  CAS  Google Scholar 

  63. Schmidt SK, Siepmann S, Kuhlmann K, Meyer HE, Metzger S, Pudelko S, et al. Influence of tryptophan contained in 1-methyl-tryptophan on antimicrobial and immunoregulatory functions of indoleamine 2,3-dioxygenase. Plos One. 2012;7(7):e44797. doi:10.1371/journal.Pone.0044797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wenzel H. The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 cells. Cell Immunol. 2014;289(1–2):42–8. doi:10.1016/j.Cellimm.2014.02.005.

    Google Scholar 

  65. Frumento Guido, Rotondo Rita, Tonetti Michela, Damonte Gianluca, Benatti Umberto, Ferrara Giovanni Battista. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68. doi:10.1084/jem.20020121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song H, Park H, Kim YS, Kim KD, Lee HK, Cho DH, et al. L-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species. Int Immunopharmacol. 2011;11(8):932–8. doi:10.1016/j.intimp.2011.02.005.

    Article  CAS  PubMed  Google Scholar 

  67. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2015;99:180–5. doi:10.1016/j.addr.2015.11.009.

    Article  PubMed  Google Scholar 

  68. Gonzalezgugel E, Saxena M, Bhardwaj N. Modulation of innate immunity in the tumor microenvironment.J. Cancer Immunol Immunother. 2016;65(10):1–8. doi:10.1007/s00262-016-1859-9.

    Google Scholar 

  69. Burga Rachel A, Nguyen Tuongvan, Zulovich Jane, Madonna Sarah, Ylisastigui Loyda, Fernandes Rohan. Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells J. Cytotherapy. 2016;18(11):1410–21. doi:10.1016/j.jcyt.2016.05.018.

    Article  CAS  PubMed  Google Scholar 

  70. Shissler SC, Bollino DR, Tiper IV, Bates JP, Derakhshandeh R, Webb TJ. Immunotherapeutic strategies targeting natural killer T cell responses in cancer J. Immunogenetics. 2016;8:1–16. doi:10.1007/s00251-016-0928-8.

    Google Scholar 

  71. Salter M, Hazelwood R, Pogson CI, Iyer R, Madge DJ. The effects of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat. J Biochem Pharmacol. 1995;49(10):1435–42. doi:10.1016/0006-2952(95)00006-L.

    Article  CAS  Google Scholar 

  72. Gibney SM, Fagan EM, Waldron AM, O’Byrne J, Connor TJ, Harkin A. Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int J Neuropsychopharmacol. 2014;17(6):917–28. doi:10.1017/S1461145713001673.

    Article  CAS  PubMed  Google Scholar 

  73. Wu JS, Lin SY, Liao FY, Hsiao WC, Lee LC, Peng YH, et al. Identification of substituted naphthotriazolediones as novel tryptophan 2,3-dioxygenase (TDO) inhibitors through structure-based virtual screening. J Med Chem. 2015;58(19):7807–19. doi:10.1021/acs.jmedchem.5b00921.

    Article  CAS  PubMed  Google Scholar 

  74. Abdelmagid AF. Targeting the inhibition of tryptophan 2,3-dioxygenase (TDO-2) for cancer treatment. ACS Med Chem Lett. 2017;8:11–3. doi:10.1021/acsmedchemlett.6b00458.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the participants in this study. This work was supported by grants from National Natural Science Foundation of China (Grant Nos. 81160248 and 81560464 to DYL, and Grant No. 81560389 to ZMZ), Natural Science Foundation of Jiangxi Province (Grant No. 20151BAB205058 to DYL) and Innovation Foundation for Graduate Students of Nanchang University (Grant No. CX2015181 to YLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Ya Luo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CP., Song, YL., Zhu, ZM. et al. Targeting TDO in cancer immunotherapy. Med Oncol 34, 73 (2017). https://doi.org/10.1007/s12032-017-0933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0933-2

Keywords

Navigation