Skip to main content
Log in

Intravoxel Incoherent Motion (IVIM) Diffusion Weighted Imaging (DWI) in the Periferic Prostate Cancer Detection and Stratification

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the Intravoxel Incoherent Motion (IVIM) parameters between healthy Peripheral Zone (PZ), Benign Prostatic Hyperplasia (BPH) and Prostate Cancer (PCa) and compare them to assess whether there was correlation with Gleason Score (GS) grading system. Thirty-one patients with suspect of PCa underwent 1.5T Multi-Parametric Magnetic Resonance Imaging (MP-MRI) with endorectal coil with a protocol including T2WI, DWI using 10 b values (0, 10, 20, 30, 50, 80, 100, 200, 400, 1000 s/mm2) and DCE. Monoexponential and IVIM model fits were used to calculate both apparent diffusion coefficient (ADC) and the following IVIM parameters: molecular diffusion coefficient (D), perfusion-related diffusion coefficient (D*) and perfusion fraction (f). The ADC and D values were significantly lower in the PCa (0.70 ± 0.16 × 10−3 mm2/s and 0.88 ± 0.31 × 10−3 mm2/s) compared to those found in the PZ (1.22 ± 0.20 × 10−3 mm2/s and 1.78 ± 0.34 × 10−3 mm2/s) and in the BPH (1.53 ± 0.23 × 10−3 mm2/s and 1.11 ± 0.28 × 10−3 mm2/s). The D* parameter was significantly increased in the PCa (5.35 ± 5.12 × 10−3 mm2/s) compare to the healthy PZ (3.02 ± 2.86 × 10−3 mm2/s), instead there was not significantly difference in the PCa compare to the BPH (5.61 ± 6.77 × 10−3 mm2/s). The f was statistically lower in the PCa (9.01 ± 5.20%) compared to PZ (10.57 ± 9.30%), but not significantly different between PCa and BPH (9.29 ± 7.29%). The specificity, sensitivity and accuracy of T2WI associated with DWI and IVIM were higher (100, 98 and 99%, respectively) than for T2WI/DWI and IVIM alone (89, 92 and 90%, respectively). Only for ADC was found a statistical difference between low- and intermediate-/high-grade tumors. Adding IVIM to the MP-MRI could increase the diagnostic performance to detect clinically relevant PCa. ADC values have been found to have a rule to discriminate PCa reliably from normal areas and differed significantly in low- and intermediate-/high-grade PCa. In contrast, IVIM parameters were unable to distinguish between the different GS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Kurhanewicz J, Vigneron D, Carroll P, Coakley F. Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol. 2008;18(1):71–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mottet N, Bellmunt J, Bolla M, et al. EAU–ESTRO–SIOG guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2016;S0302–2838(16):30470–5.

    Google Scholar 

  4. Pinto PA, Chung PH, Rastinehad AR, et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol. 2011;186(4):1281–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging—guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol. 2012;61:177–84.

    Article  PubMed  Google Scholar 

  6. Vargas HA, Akin O, Franiel T, et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology. 2011;259:775–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turkbey B, Shah VP, Pang Y, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-TMR images. Radiology. 2011;258:488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging-reporting and data system: 2015, version 2, Eur Urol. 2016;69(1):16–40.

  9. Panebianco F, Barchetti V, Sciarra A, et al. Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol Oncol. 2015;33:1–7.

    Article  Google Scholar 

  10. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    Article  PubMed  Google Scholar 

  12. Le Bihan D, Breton E, Lallemand D. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  PubMed  Google Scholar 

  13. Kuru TH, Roethke MC, Stieltjes B, et al. Intravoxel incoherent motion (IVIM) diffusion imaging in prostate cancer-what does it add? J Comput Assist Tomogr. 2014;38(4):558–64.

    Article  PubMed  Google Scholar 

  14. Döpfert JLA, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging. 2011;29(8):1053–8.

    Article  PubMed  Google Scholar 

  15. Riches SF, Hawtin K, Charles-Edwards EM, de Souza NM. Diffusion-weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients. NMR Biomed. 2009;22(3):318–25.

    Article  CAS  PubMed  Google Scholar 

  16. Mazaheri Y, Vargas HA, Akin O, et al. Reducing the influence of b-value selection on diffusion-weighted imaging of the prostate: evaluation of a revised monoexponential model within a clinical setting. J Magn Reson Imaging. 2012;35(3):660–8.

    Article  PubMed  Google Scholar 

  17. Xu J, Humphrey PA, Kibel AS, et al. Magnetic resonance diffusion characteristics of histologically defined prostate cancer in humans. Magn Reson Med. 2009;61(4):842–50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ocak I, Bernardo M, Metzger G, et al. Dynamic contrastenhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol. 2007;189(4):849.

    Article  PubMed  Google Scholar 

  19. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med. 2003;9(6):713–25.

    Article  CAS  PubMed  Google Scholar 

  20. Prince MR, Zhang HL, Roditi GH, et al. Risk factors for NSF: a literature review. J Magn Reson Imaging. 2009;30(6):1298–308.

    Article  PubMed  Google Scholar 

  21. Kuru TH, Roethke MC, Seidenader J, et al. Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer. J Urol. 2013;190:1380–6.

    Article  PubMed  Google Scholar 

  22. Matoso A, Epstein JI. Grading of prostate cancer: past, present, and future. Curr Urol Rep. 2016;17(3):25.

    Article  PubMed  Google Scholar 

  23. Anderson TW. An introduction to multivariate statistical analysis. 2nd ed. New York: Wiley; 1984.

    Google Scholar 

  24. Koh DM, Collins DJ. Diffusion-weighted mri in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.

    Article  PubMed  Google Scholar 

  25. Tanimoto A, Nakashima J, Kohno H, et al. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging. 2007;25:146–52.

    Article  PubMed  Google Scholar 

  26. Pang Y, Turkbey B, Bernardo M, et al. Intravoxel incoherent motion (IVIM) MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med. 2013;69(2):553–62.

    Article  PubMed  Google Scholar 

  27. Valerio M, Zini C, Fierro D, et al. 3T multiparametric MRI of the prostate: does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone? Eur J Radiol. 2016;85(4):790–4.

    Article  PubMed  Google Scholar 

  28. Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology. 2008;249:891–9.

    Article  PubMed  Google Scholar 

  29. Le Bihan D. Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology. 2008;249(3):748–52.

    Article  PubMed  Google Scholar 

  30. Shinmoto H, Tamura C, Soga S, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol. 2012;199(4):W496–500.

    Article  PubMed  Google Scholar 

  31. Shinmoto H, Oshio K, Tanimoto A, Higuchi N, Okuda S, Kuribayashi S, Mulkern RV. Biexponential apparent diffusion coefficients in prostate cancer. Magn Reson Imaging. 2009;27(3):355–9.

    Article  PubMed  Google Scholar 

  32. Mulkern RV, Barnes AS, Haker SJ, Hung YP, Rybicki FJ, Maier SE, Tempany CM. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging. 2006;24(5):563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Le Bihan D, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med. 1992;27:171–8.

    Article  PubMed  Google Scholar 

  34. Yang F, Tuxhorn JA, Ressler SJ, et al. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 2005;65(19):8887–95.

    Article  CAS  PubMed  Google Scholar 

  35. Alonzi R, Padhani AR, Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol. 2007;63(3):335–50.

    Article  PubMed  Google Scholar 

  36. Franiel T, Lüdemann L, Rudolph B, et al. Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion prepared dual-contrast gradient echo sequence. Invest Radiol. 2008;43:481–7.

    Article  PubMed  Google Scholar 

  37. Patel J, Sigmund EE, Rusinek H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging. 2010;31:589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and prostate cancer. Urology. 2002;60:78–83.

    Article  PubMed  Google Scholar 

  39. Koh DM, Blackledge M, Collins DJ, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumors treated with combretastatin A4 phosphate and bevacizumab in a twocentre phase I clinical trial. Eur Radiol. 2009;19:2728–38.

    Article  PubMed  Google Scholar 

  40. Wagner B, Drel V, Gorin Y. Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Renal Physiol. 2016;311(1):F1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Pesapane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesapane, F., Patella, F., Fumarola, E.M. et al. Intravoxel Incoherent Motion (IVIM) Diffusion Weighted Imaging (DWI) in the Periferic Prostate Cancer Detection and Stratification. Med Oncol 34, 35 (2017). https://doi.org/10.1007/s12032-017-0892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0892-7

Keywords

Navigation