Skip to main content

Advertisement

Log in

KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancers are the group of diseases, which arise because of the uncontrolled behavior of some of the genes in our cells. There are possibilities of gene amplifications, overexpressions, deletions and other anomalies which might lead to the development and spread of cancer. One of the most dangerous ways to the cancers is the mutations of the genes. The mutated genes can start unstoppable proliferation of cells, their uncontrolled motility, protection from apoptosis, the DNA mutation enhancement as well as other anomalies, leading to the cancer. This review focuses on the genes, which are frequently mutated in various cancers and are known to be important in the advance and progression of colorectal cancer and melanoma, namely KRAS, NRAS and BRAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Society AAC. American Cancer Society. Cancer Facts & Figures 2016. 2016. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf.

  2. Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196(2):189–201. doi:10.1083/jcb.201103008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA. 1982;79(16):4848–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 a resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990;9(8):2351–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Colicelli J. Human RAS superfamily proteins and related GTPases. Science’s STKE: signal transduction knowledge environment. 2004;2004(250):RE13. doi:10.1126/stke.2502004re13.

    PubMed  PubMed Central  Google Scholar 

  6. The NCI’s RAS Initiative. http://www.cancer.gov/research/key-initiatives/ras.

  7. Ras superfamily small G proteins: biology and mechanisms 1: general features, signaling. Wien: Springer; 2014.

  8. Donaldson JG, Honda A. Localization and function of Arf family GTPases. Biochem Soc Trans. 2005;33(Pt 4):639–42. doi:10.1042/BST0330639.

    Article  CAS  PubMed  Google Scholar 

  9. Birsa N, Norkett R, Higgs N, Lopez-Domenech G, Kittler JT. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins. Biochem Soc Trans. 2013;41(6):1525–31. doi:10.1042/BST20130234.

    Article  CAS  PubMed  Google Scholar 

  10. Hanna MGT, Mela I, Wang L, Henderson RM, Chapman ER, Edwardson JM, et al. Sar1 GTPase activity is regulated by membrane curvature. J Biol Chem. 2016;291(3):1014–27. doi:10.1074/jbc.M115.672287.

    Article  CAS  PubMed  Google Scholar 

  11. Mott HR, Owen D. Structures of Ras superfamily effector complexes: what have we learnt in two decades? Crit Rev Biochem Mol Biol. 2015;50(2):85–133. doi:10.3109/10409238.2014.999191.

    Article  CAS  PubMed  Google Scholar 

  12. Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294(5545):1299–304. doi:10.1126/science.1062023.

    Article  CAS  PubMed  Google Scholar 

  13. Biou V, Cherfils J. Structural principles for the multispecificity of small GTP-binding proteins. Biochemistry. 2004;43(22):6833–40. doi:10.1021/bi049630u.

    Article  CAS  PubMed  Google Scholar 

  14. Olson MF, Marais R. Ras protein signalling. Semin Immunol. 2000;12(1):63–73. doi:10.1006/smim.2000.0208.

    Article  CAS  PubMed  Google Scholar 

  15. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828–51. doi:10.1038/nrd4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDE delta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol. 2011;14(2):148–58. doi:10.1038/ncb2394.

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2(3):344–58. doi:10.1177/1947601911411084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal. 2013;25(10):1955–61. doi:10.1016/j.cellsig.2013.04.009.

    Article  CAS  PubMed  Google Scholar 

  19. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35. doi:10.1038/nature01148.

    Article  CAS  PubMed  Google Scholar 

  20. Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582(14):2093–101. doi:10.1016/j.febslet.2008.04.039.

    Article  CAS  PubMed  Google Scholar 

  21. Tang Y, Olufemi L, Wang MT, Nie D. Role of Rho GTPases in breast cancer. Front Biosci. 2008;13:759–76.

    Article  CAS  PubMed  Google Scholar 

  22. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–49. doi:10.1152/physrev.00059.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25. doi:10.1038/nrm2728.

    Article  CAS  PubMed  Google Scholar 

  24. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(Pt 5):843–6. doi:10.1242/jcs.01660.

    Article  CAS  PubMed  Google Scholar 

  25. Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc Natl Acad Sci USA. 1994;91(25):11963–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta. 2009;1795(2):110–6.

    CAS  PubMed  Google Scholar 

  27. Rush MG, Drivas G, D’Eustachio P. The small nuclear GTPase Ran: how much does it run? Bioessays. 1996;18(2):103–12. doi:10.1002/bies.950180206.

    Article  CAS  PubMed  Google Scholar 

  28. Li HY, Cao K, Zheng Y. Ran in the spindle checkpoint: a new function for a versatile GTPase. Trends Cell Biol. 2003;13(11):553–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kalab P, Heald R. The RanGTP gradient—a GPS for the mitotic spindle. J Cell Sci. 2008;121(Pt 10):1577–86. doi:10.1242/jcs.005959.

    Article  CAS  PubMed  Google Scholar 

  30. Doherty KJ, McKay C, Chan KK, El-Tanani MK. RAN GTPase as a target for cancer therapy: ran binding proteins. Curr Mol Med. 2011;11(8):686–95.

    Article  CAS  PubMed  Google Scholar 

  31. Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 2002;3(11):1035–41. doi:10.1093/embo-reports/kvf221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong C, Zhang X, Zhou F, Dou H, Duvernay MT, Zhang P, et al. ADP-ribosylation factors modulate the cell surface transport of G protein-coupled receptors. J Pharmacol Exp Ther. 2010;333(1):174–83. doi:10.1124/jpet.109.161489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morgan C, Lewis PD, Hopkins L, Burnell S, Kynaston H, Doak SH. Increased expression of ARF GTPases in prostate cancer tissue. SpringerPlus. 2015;4:342. doi:10.1186/s40064-015-1136-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Donaldson JG. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem. 2003;278(43):41573–6. doi:10.1074/jbc.R300026200.

    Article  CAS  PubMed  Google Scholar 

  35. Gosal G, Kochut KJ, Kannan N. ProKinO: an ontology for integrative analysis of protein kinases in cancer. PLoS ONE. 2011;6(12):e28782. doi:10.1371/journal.pone.0028782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wheeler DL, Iida M, Dunn EF. The role of Src in solid tumors. Oncologist. 2009;14(7):667–78. doi:10.1634/theoncologist.2009-0009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cicenas J, Urban P, Kung W, Vuaroqueaux V, Labuhn M, Wight E, et al. Phosphorylation of tyrosine 1248-ERBB2 measured by chemiluminescence-linked immunoassay is an independent predictor of poor prognosis in primary breast cancer patients. Eur J Cancer. 2006;42(5):636–45. doi:10.1016/j.ejca.2005.11.012.

    Article  CAS  PubMed  Google Scholar 

  38. Cicenas J. The potential role of the EGFR/ERBB2 heterodimer in breast cancer. Expert Opin Ther Pat. 2007;17(6):607–16. doi:10.1517/13543776.17.6.607.

    Article  CAS  Google Scholar 

  39. Cicenas J, Urban P, Vuaroqueaux V, Labuhn M, Kung W, Wight E, et al. Increased level of phosphorylated akt measured by chemiluminescence-linked immunosorbent assay is a predictor of poor prognosis in primary breast cancer overexpressing ErbB-2. Breast Cancer Res. 2005;7(4):R394–401. doi:10.1186/bcr1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cicenas J. The potential role of Akt phosphorylation in human cancers. Int J Biol Markers. 2008;23(1):1–9.

    CAS  PubMed  Google Scholar 

  41. Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011;137(10):1409–18. doi:10.1007/s00432-011-1039-4.

    Article  CAS  PubMed  Google Scholar 

  42. Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, et al. Highlights of the latest advances in research on CDK inhibitors. Cancers. 2014;6(4):2224–42. doi:10.3390/cancers6042224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, et al. Roscovitine in cancer and other diseases. Ann Transl Med. 2015;3(10):135. doi:10.3978/j.issn.2305-5839.2015.03.61.

    PubMed  PubMed Central  Google Scholar 

  44. Mes-Masson AM, Witte ON. Role of the abl oncogene in chronic myelogenous leukemia. Adv Cancer Res. 1987;49:53–74.

    Article  CAS  PubMed  Google Scholar 

  45. Cicenas J. The Aurora kinase inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2016;142(9):1995–2012. doi:10.1007/s00432-016-2136-1.

    Article  CAS  PubMed  Google Scholar 

  46. Cicenas J, Cicenas E. Multi-kinase inhibitors, AURKs and cancer. Med Oncol. 2016;33(5):43. doi:10.1007/s12032-016-0758-4.

    Article  PubMed  CAS  Google Scholar 

  47. Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun. 2010;399(3):313–7. doi:10.1016/j.bbrc.2010.07.092.

    Article  CAS  PubMed  Google Scholar 

  48. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54. doi:10.1038/nature00766.

    Article  CAS  PubMed  Google Scholar 

  49. Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995;14(13):3136–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 2011;44(2):133–9. doi:10.1038/ng.1026.

    Article  PubMed  CAS  Google Scholar 

  51. Nicos M, Krawczyk P, Jarosz B, Sawicki M, Michnar M, Trojanowski T, et al. Sensitive methods for screening of the MEK1 gene mutations in patients with central nervous system metastases of non-small cell lung cancer. Clin Transl Oncol. 2016;18(10):1039–43. doi:10.1007/s12094-016-1483-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):527–32. doi:10.1038/370527a0.

    Article  CAS  PubMed  Google Scholar 

  53. Eifert C, Wang X, Kokabee L, Kourtidis A, Jain R, Gerdes MJ, et al. A novel isoform of the B cell tyrosine kinase BTK protects breast cancer cells from apoptosis. Genes Chromosomes Cancer. 2013;52(10):961–75. doi:10.1002/gcc.22091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wing MR, Bourdon DM, Harden TK. PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3(5):273–80. doi:10.1124/mi.3.5.273.

    Article  CAS  PubMed  Google Scholar 

  55. Jain K, Basu A. The multifunctional protein kinase C-epsilon in cancer development and progression. Cancers. 2014;6(2):860–78. doi:10.3390/cancers6020860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bosco R, Melloni E, Celeghini C, Rimondi E, Vaccarezza M, Zauli G. Fine tuning of protein kinase C (PKC) isoforms in cancer: shortening the distance from the laboratory to the bedside. Mini Rev Med Chem. 2011;11(3):185–99.

    Article  CAS  PubMed  Google Scholar 

  57. Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, et al. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J. 2008;27(18):2375–87. doi:10.1038/emboj.2008.166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guin S, Theodorescu D. The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin. 2015;36(3):291–7. doi:10.1038/aps.2014.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;132(5):1133–45. doi:10.1002/ijc.27711.

    Article  CAS  PubMed  Google Scholar 

  60. Binefa G, Rodriguez-Moranta F, Teule A, Medina-Hayas M. Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol. 2014;20(22):6786–808. doi:10.3748/wjg.v20.i22.6786.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Heinimann K. Toward a molecular classification of colorectal cancer: the role of microsatellite instability status. Front Oncol. 2013;3:272. doi:10.3389/fonc.2013.00272.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thiel A, Ristimaki A. Toward a molecular classification of colorectal cancer: the role of BRAF. Front Oncol. 2013;3:281. doi:10.3389/fonc.2013.00281.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic acids research. 2015;43(Database issue):D805–11. doi:10.1093/nar/gku1075.

    Article  PubMed  Google Scholar 

  64. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:10.1038/nature11252.

    Article  CAS  Google Scholar 

  65. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277(5324):333–8.

    Article  CAS  PubMed  Google Scholar 

  66. Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol. 2010;28(3):466–74. doi:10.1200/JCO.2009.23.3452.

    Article  CAS  PubMed  Google Scholar 

  67. Mao C, Wu XY, Yang ZY, Threapleton DE, Yuan JQ, Yu YY, et al. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases. Sci Rep. 2015;5:8065. doi:10.1038/srep08065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol. 2014;53(7):852–64. doi:10.3109/0284186X.2014.895036.

    Article  CAS  PubMed  Google Scholar 

  69. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, et al. Association of KRAS p G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812–20. doi:10.1001/jama.2010.1535.

    Article  PubMed  Google Scholar 

  70. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.

    Article  CAS  PubMed  Google Scholar 

  71. Safaee Ardekani G, Jafarnejad SM, Tan L, Saeedi A, Li G. The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS ONE. 2012;7(10):e47054. doi:10.1371/journal.pone.0047054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yaeger R, Cercek A, Chou JF, Sylvester BE, Kemeny NE, Hechtman JF, et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer. 2014;120(15):2316–24. doi:10.1002/cncr.28729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D, et al. NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol. 2010;19(3):157–63. doi:10.1097/PDM.0b013e3181c93fd1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schirripa M, Cremolini C, Loupakis F, Morvillo M, Bergamo F, Zoratto F, et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer. 2015;136(1):83–90. doi:10.1002/ijc.28955.

    Article  CAS  PubMed  Google Scholar 

  75. Janku F, Wheler JJ, Hong DS, Kurzrock R. Bevacizumab-based treatment in colorectal cancer with a NRAS Q61K mutation. Target Oncol. 2013;8(3):183–8. doi:10.1007/s11523-013-0266-9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. McCourt C, Dolan O, Gormley G. Malignant melanoma: a pictorial review. Ulster Med J. 2014;83(2):103–10.

    PubMed  PubMed Central  Google Scholar 

  77. Abbasi NR, Shaw HM, Rigel DS, Friedman RJ, McCarthy WH, Osman I, et al. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 2004;292(22):2771–6. doi:10.1001/jama.292.22.2771.

    Article  CAS  PubMed  Google Scholar 

  78. Milagre C, Dhomen N, Geyer FC, Hayward R, Lambros M, Reis-Filho JS, et al. A mouse model of melanoma driven by oncogenic KRAS. Cancer Res. 2010;70(13):5549–57. doi:10.1158/0008-5472.CAN-09-4254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whitwam T, Vanbrocklin MW, Russo ME, Haak PT, Bilgili D, Resau JH, et al. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene. 2007;26(31):4563–70. doi:10.1038/sj.onc.1210239.

    Article  CAS  PubMed  Google Scholar 

  80. Yu X, Ambrosini G, Roszik J, Eterovic AK, Stempke-Hale K, Seftor EA, et al. Genetic analysis of the ‘uveal melanoma’ C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line. Pigment Cell Melanoma Res. 2015;28(3):357–9. doi:10.1111/pcmr.12345.

    Article  CAS  PubMed  Google Scholar 

  81. Bhatia P, Friedlander P, Zakaria EA, Kandil E. Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research. Ann Transl Med. 2015;3(2):24. doi:10.3978/j.issn.2305-5839.2014.12.05.

    PubMed  PubMed Central  Google Scholar 

  82. Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26(11):1131–55. doi:10.1101/gad.191999.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cruz F 3rd, Rubin BP, Wilson D, Town A, Schroeder A, Haley A, et al. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003;63(18):5761–6.

    CAS  PubMed  Google Scholar 

  84. Spagnolo F, Ghiorzo P, Orgiano L, Pastorino L, Picasso V, Tornari E, et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 2015;8:157–68. doi:10.2147/OTT.S39096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim SY, Kim SN, Hahn HJ, Lee YW, Choe YB, Ahn KJ. Metaanalysis of BRAF mutations and clinicopathologic characteristics in primary melanoma. J Am Acad Dermatol. 2015;72(6):1036–46. doi:10.1016/j.jaad.2015.02.1113.

    Article  CAS  PubMed  Google Scholar 

  86. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20. doi:10.1038/ng1054.

    Article  CAS  PubMed  Google Scholar 

  87. Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122(2):342–8. doi:10.1046/j.0022-202X.2004.22225.x.

    Article  CAS  PubMed  Google Scholar 

  88. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11(11):873–86. doi:10.1038/nrd3847.

    Article  CAS  PubMed  Google Scholar 

  89. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32. doi:10.1016/S1470-2045(14)70012-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grob JJ, Amonkar MM, Karaszewska B, Schachter J, Dummer R, Mackiewicz A, et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-label, randomised trial. Lancet Oncol. 2015;16(13):1389–98. doi:10.1016/S1470-2045(15)00087-X.

    Article  CAS  PubMed  Google Scholar 

  91. Sharma SP. RAS mutations and the development of secondary tumours in patients given BRAF inhibitors. Lancet Oncology. 2011;13:e91.

    Article  Google Scholar 

  92. Administration USFaD. Approved drugs. Trametinib and Dabrafenib. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm381451.htm.

  93. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51. doi:10.1016/S0140-6736(15)60898-4.

    Article  CAS  PubMed  Google Scholar 

  94. Schadendorf D, Amonkar MM, Stroyakovskiy D, Levchenko E, Gogas H, de Braud F, et al. Health-related quality of life impact in a randomised phase III study of the combination of dabrafenib and trametinib versus dabrafenib monotherapy in patients with BRAF V600 metastatic melanoma. Eur J Cancer. 2015;51(7):833–40. doi:10.1016/j.ejca.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  95. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65. doi:10.1016/S0140-6736(12)60868-X.

    Article  CAS  PubMed  Google Scholar 

  96. PRNewswire. Binimetinib and encorafenib combination shows promising clinical activity and potential differentiated safety in BRAF-mutant melanoma. http://www.prnewswire.com/news-releases/binimetinib-and-encorafenib-combination-shows-promising-clinical-activity-and-potential-differentiated-safety-in-braf-mutant-melanoma-300091510.html.

  97. Study comparing combination of LGX818 plus MEK162 versus vemurafenib and LGX818 monotherapy in BRAF mutant melanoma (COLUMBUS). NCT01909453. https://clinicaltrials.gov/show/NCT01909453.

  98. Administration USFaD. Approved drugs. Sorafenib (NEXAVAR). http://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm376547.htm.

  99. Mahalingam D, Malik L, Beeram M, Rodon J, Sankhala K, Mita A, et al. Phase II study evaluating the efficacy, safety, and pharmacodynamic correlative study of dual antiangiogenic inhibition using bevacizumab in combination with sorafenib in patients with advanced malignant melanoma. Cancer Chemother Pharmacol. 2014;74(1):77–84. doi:10.1007/s00280-014-2479-8.

    Article  CAS  PubMed  Google Scholar 

  100. Eisen T, Marais R, Affolter A, Lorigan P, Robert C, Corrie P, et al. Sorafenib and dacarbazine as first-line therapy for advanced melanoma: phase I and open-label phase II studies. Br J Cancer. 2011;105(3):353–9. doi:10.1038/bjc.2011.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Amaravadi RK, Schuchter LM, McDermott DF, Kramer A, Giles L, Gramlich K, et al. Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases. Clin Cancer Res. 2009;15(24):7711–8. doi:10.1158/1078-0432.CCR-09-2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, Hersey P, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27(17):2823–30. doi:10.1200/JCO.2007.15.7636.

    Article  CAS  PubMed  Google Scholar 

  103. Flaherty KT, Lee SJ, Zhao F, Schuchter LM, Flaherty L, Kefford R, et al. Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol. 2013;31(3):373–9. doi:10.1200/JCO.2012.42.1529.

    Article  CAS  PubMed  Google Scholar 

  104. Chin L, Merlino G, DePinho RA. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 1998;12(22):3467–81.

    Article  CAS  PubMed  Google Scholar 

  105. Jafari M, Papp T, Kirchner S, Diener U, Henschler D, Burg G, et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J Cancer Res Clin Oncol. 1995;121(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  106. Papp T, Pemsel H, Zimmermann R, Bastrop R, Weiss DG, Schiffmann D. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J Med Genet. 1999;36(8):610–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.

    CAS  PubMed  Google Scholar 

  108. Devitt B, Liu W, Salemi R, Wolfe R, Kelly J, Tzen CY, et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24(4):666–72. doi:10.1111/j.1755-148X.2011.00873.x.

    Article  CAS  PubMed  Google Scholar 

  109. Jakob JA, Bassett RL Jr, Ng CS, Curry JL, Joseph RW, Alvarado GC, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23. doi:10.1002/cncr.26724.

    Article  CAS  PubMed  Google Scholar 

  110. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7. doi:10.1038/nature09626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Joseph RW, Sullivan RJ, Harrell R, Stemke-Hale K, Panka D, Manoukian G, et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35(1):66–72. doi:10.1097/CJI.0b013e3182372636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnson DB, Lovly CM, Flavin M, Panageas KS, Ayers GD, Zhao Z, et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 2015;3(3):288–95. doi:10.1158/2326-6066.CIR-14-0207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Casadei Gardini A, Capelli L, Ulivi P, Giannini M, Freier E, Tamberi S, et al. KRAS, BRAF and PIK3CA status in squamous cell anal carcinoma (SCAC). PLoS ONE. 2014;9(3):e92071. doi:10.1371/journal.pone.0092071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Martin V, Zanellato E, Franzetti-Pellanda A, Molinari F, Movilia A, Paganotti A, et al. EGFR, KRAS, BRAF, and PIK3CA characterization in squamous cell anal cancer. Histol Histopathol. 2014;29(4):513–21. doi:10.14670/HH-29.10.513.

    CAS  PubMed  Google Scholar 

  115. Lukan N, Strobel P, Willer A, Kripp M, Dinter D, Mai S, et al. Cetuximab-based treatment of metastatic anal cancer: correlation of response with KRAS mutational status. Oncology. 2009;77(5):293–9. doi:10.1159/000259615.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this research was funded by Scientific Council of Lithuania (Scientific team Project #MIP-033/2014); therefore, we thank the organization. Jonas Cicenas would also like to thank Mauro Delorenzi for scientific inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Cicenas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicenas, J., Tamosaitis, L., Kvederaviciute, K. et al. KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma. Med Oncol 34, 26 (2017). https://doi.org/10.1007/s12032-016-0879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0879-9

Keywords

Navigation