Skip to main content

Advertisement

Log in

Salivary biomarkers in cancer detection

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is the second most common cause of death in the USA. Its symptoms are often not specific and absent, until the tumors have already metastasized. Therefore, there is an urgent demand for developing rapid, highly accurate and noninvasive tools for cancer screening, early detection, diagnostics, staging and prognostics. Saliva as a multi-constituent oral fluid comprises secretions from the major and minor salivary glands, extensively supplied by blood. Molecules such as DNAs, RNAs, proteins, metabolites, and microbiota, present in blood, could be also found in saliva. Recently, salivary diagnostics has drawn significant attention for the detection of specific biomarkers, since the sample collection and processing are simple, cost-effective, and precise and do not cause patient discomfort. Here, we review recent salivary candidate biomarkers for systemic cancers by dividing them according to their origin into: genomic, transcriptomic, proteomic, metabolomic and microbial types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  2. Huang MY, Tsai HL, Huang JJ, Wang JY. Clinical implications and future perspectives of circulating tumor cells and biomarkers in clinical outcomes of colorectal cancer. Transl Oncol. 2016;9:340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soini HA, Klouckova I, Wiesler D, Oberzaucher E, Grammer K, Dixon SJ, et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. J Chem Ecol. 2010;36:1035–42.

    Article  CAS  PubMed  Google Scholar 

  4. Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150:119–31.

    Article  CAS  PubMed  Google Scholar 

  5. Slavkin HC. Toward molecularly based diagnostics for the oral cavity. J Am Dent Assoc. 1998;129:1138–43.

    Article  CAS  PubMed  Google Scholar 

  6. Lee JM, Garon E, Wong DT. Salivary diagnostics. Orthod Craniofac Res. 2009;12:206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lawrence HP. Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health. J Can Dent Assoc. 2002;68:170–5.

    PubMed  Google Scholar 

  8. Rylander-Rudqvist T, Håkansson N, Tybring G, Wolk A. Quality and quantity of saliva DNA obtained from the self-administrated oragene method—a pilot study on the cohort of Swedish men. Cancer Epidemiol Biomark Prev. 2006;15:1742–5.

    Article  CAS  Google Scholar 

  9. Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccarini C, et al. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genom. 2012;5:19.

    Article  CAS  Google Scholar 

  10. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  CAS  PubMed  Google Scholar 

  11. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92.

    Article  CAS  PubMed  Google Scholar 

  12. Wei F, Lin CC, Joon A, Feng Z, Troche G, Lira ME, et al. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am J Respir Crit Care Med. 2014;190:1117–26.

    Article  CAS  PubMed  Google Scholar 

  13. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15:5473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Zhou X, St John MA, Wong DT. RNA profiling of cell-free saliva using microarray technology. J Dent Res. 2004;83:199–203.

    Article  CAS  PubMed  Google Scholar 

  15. Lee YH, Zhou H, Reiss JK, Yan X, Zhang L, Chia D, et al. Direct saliva transcriptome analysis. Clin Chem. 2011;57:1295–302.

    Article  CAS  PubMed  Google Scholar 

  16. Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci. 2015;16:8676–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Xiao H, Zhou H, Santiago S, Lee JM, Garon EB, et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci. 2012;69:3341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH, et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology. 2010;138:949–57.

    Article  CAS  PubMed  Google Scholar 

  19. Gao S, Chen LY, Wang P, Liu LM, Chen Z. MicroRNA expression in salivary supernatant of patients with pancreatic cancer and its relationship with ZHENG. Biomed Res Int. 2014;2014:756347.

    PubMed  PubMed Central  Google Scholar 

  20. Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE. 2010;5:e15573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bassim CW, Ambatipudi KS, Mays JW, Edwards DA, Swatkoski S, Fassil H, et al. Quantitative salivary proteomic differences in oral chronic graft-versus-host disease. J Clin Immunol. 2012;32:1390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loo J, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89:1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Papale M, Pedicillo MC, Di Paolo S, Thatcher BJ, Lo Muzio L, Bufo P, et al. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF/MS): from sample collection to data analysis. Clin Chem Lab Med. 2008;46:89–99.

    Article  CAS  PubMed  Google Scholar 

  24. Ciavarella D, Mastrovincenzo M, D’Onofrio V, Chimenti C, Parziale V, Barbato E, et al. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) in orthodontic treatment: first pilot study. Prog Orthod. 2011;12:126–31.

    Article  PubMed  Google Scholar 

  25. Streckfus CF, Bigler LR, Zwick M. The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: a feasibility study. J Oral Pathol Med. 2006;35:292–300.

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Yang T, Lin J. Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt. 2012;17:037003.

    Article  PubMed  Google Scholar 

  27. Wu W, Gong H, Liu M, Chen G, Chen R. Noninvasive breast tumors detection based on saliva protein surface enhanced Raman spectroscopy and regularized multinomial regression. In: 2015 8th international conference on biomedical engineering and informatics (BMEI). IEEE; 2015. p. 214–218.

  28. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.

    Article  CAS  PubMed  Google Scholar 

  29. Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature. 2008;456:443.

    Article  CAS  PubMed  Google Scholar 

  30. Park C, Yun S, Lee SY, Park K, Lee J. Metabolic profiling of Klebsiella oxytoca: evaluation of methods for extraction of intracellular metabolites using UPLC/Q-TOF-MS. Appl Biochem Biotechnol. 2012;167:425–38.

    Article  CAS  PubMed  Google Scholar 

  31. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6:78–95.

    Article  CAS  PubMed  Google Scholar 

  32. Wei J, Xie G, Zhou Z, Shi P, Qiu Y, Zheng X, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer. 2011;129:2207–17.

    Article  CAS  PubMed  Google Scholar 

  33. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, et al. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013;34:2865–72.

    CAS  PubMed  Google Scholar 

  34. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87:1016–20.

    Article  CAS  PubMed  Google Scholar 

  35. Burne RA, Zeng L, Ahn SJ, Palmer SR, Liu Y, Lefebure T, et al. Progress dissecting the oral microbiome in caries and health. Adv Dent Res. 2012;24:77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ge X, Rodriguez R, Trinh M, Gunsolley J, Xu P. Oral microbiome of deep and shallow dental pockets in chronic periodontitis. PLoS ONE. 2013;8:e65520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet. 2013;22:R88–94.

    Article  CAS  PubMed  Google Scholar 

  38. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61:582–8.

    Article  CAS  PubMed  Google Scholar 

  40. Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS, Kelley ST. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ. 2015;3:e1373.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zilberman Y, Sonkusale SR. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens Bioelectron. 2015;67:465–71.

    Article  CAS  PubMed  Google Scholar 

  42. Agha-Hosseini F, Mirzaii-Dizgah I, Rahimi A. Correlation of serum and salivary CA15-3 levels in patients with breast cancer. Med Oral Patol Oral Cir Bucal. 2009;14:e521–4.

    Article  PubMed  Google Scholar 

  43. Lau CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS ONE. 2012;7:e33037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;51:2105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  46. Pisetsky DS, Gauley J, Ullal AJ. Microparticles as a source of extracellular DNA. Immunol Res. 2011;49:227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    PubMed  Google Scholar 

  48. Yamada T, Inoshima Y, Matsuda T, Ishiguro N. Comparison of methods for isolating exosomes from bovine milk. J Vet Med Sci. 2012;74:1523–5.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res. 2009;8:1304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008;31:1059–62.

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoodzadeh Hosseini H, Imani Fooladi AA, Soleimanirad J, Nourani MR, Davaran S, Mahdavi M. Staphylococcal entorotoxin B anchored exosome induces apoptosis in negative esterogen receptor breast cancer cells. Tumour Biol. 2014;35:3699–707.

    Article  CAS  PubMed  Google Scholar 

  52. Ritchie AJ, Crawford DM, Ferguson DJ, Burthem J, Roberts DJ. Normal prion protein is expressed on exosomes isolated from human plasma. Br J Haematol. 2013;163:678–80.

    Article  CAS  PubMed  Google Scholar 

  53. Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie. 2013;68:969–73.

    CAS  PubMed  Google Scholar 

  54. Beninson LA, Fleshner M. Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol. 2014;26:394–401.

    Article  CAS  PubMed  Google Scholar 

  55. O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther. 2012;12:262–74.

    Article  PubMed  Google Scholar 

  56. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288:26888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pu D, Liang H, Wei F, Akin D, Feng Z, Yan Q, et al. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: a pilot study. Thorac Cancer. 2016;7:428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DT. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteom. 2012;11(M111):012112.

    Google Scholar 

  59. Jenkinson C, Earl J, Ghaneh P, Halloran C, Carrato A, Greenhalf W, et al. Biomarkers for early diagnosis of pancreatic cancer. Expert Rev Gastroenterol Hepatol. 2015;9:305–15.

    Article  CAS  PubMed  Google Scholar 

  60. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–57.

    Article  CAS  PubMed  Google Scholar 

  61. Humeau M, Vignolle-Vidoni A, Sicard F, Martins F, Bournet B, Buscail L, et al. Salivary microRNA in pancreatic cancer patients. PLoS ONE. 2015;10:e0130996.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xie Z, Yin X, Gong B, Nie W, Wu B, Zhang X, et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res (Phila). 2015;8:165–73.

    Article  CAS  Google Scholar 

  63. Skaane P. Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review. Acta Radiol. 2009;50:3–14.

    Article  CAS  PubMed  Google Scholar 

  64. Laidi F, Bouziane A, Lakhdar A, Khabouze S, Amrani M, Rhrab B, et al. Significant correlation between salivary and serum Ca 15-3 in healthy women and breast cancer patients. Asian Pac J Cancer Prev. 2014;15:4659–62.

    Article  PubMed  Google Scholar 

  65. Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteom. 2013;10:13.

    Article  Google Scholar 

  66. Wood N, Streckfus CF. The expression of lung resistance protein in saliva: a novel prognostic indicator protein for carcinoma of the breast. Cancer Investig. 2015;33:510–5.

    Article  CAS  Google Scholar 

  67. Jinno H, Murata T, Sunamura M, Sugimoto M. Investigation of potential salivary biomarkers for the diagnosis of breast cancer. In: ASCO annual meeting proceedings; 2015. p. 145.

  68. Zhong L, Cheng F, Lu X, Duan Y, Wang X. Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta. 2016;158:351–60.

    Article  CAS  PubMed  Google Scholar 

  69. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  70. Wu ZZ, Wang JG, Zhang XL. Diagnostic model of saliva protein finger print analysis of patients with gastric cancer. World J Gastroenterol. 2009;15:865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xiao H, Zhang Y, Kim Y, Kim S, Kim JJ, Kim KM, et al. Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci Rep. 2016;6:22165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. W. Wong.

Ethics declarations

Conflict of interest

David Wong is co-founder of RNAmeTRIX Inc., a molecular diagnostic company. He holds equity in RNAmeTRIX and serves as a company Director and Scientific Advisor. The University of California also holds equity in RNAmeTRIX. Intellectual property that David Wong invented and which was patented by the University of California has been licensed to RNAmeTRIX. The other authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Xiaoqian Wang and Karolina Elżbieta Kaczor-Urbanowicz have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kaczor-Urbanowicz, K.E. & Wong, D.T.W. Salivary biomarkers in cancer detection. Med Oncol 34, 7 (2017). https://doi.org/10.1007/s12032-016-0863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0863-4

Keywords

Navigation