Skip to main content

Advertisement

Log in

Identification of reference genes and miRNAs for qRT-PCR in human esophageal squamous cell carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

It is important to select an appropriate reference gene and miRNA when using quantitative real-time polymerase chain reaction (qRT-PCR) to analyze gene and miRNA expression. However, many commonly used reference genes and miRNAs are not stably expressed and therefore not suitable for normalization or quantification of qRT-PCR data. This study aims to identify appropriate reference genes and miRNAs for use in human esophageal squamous carcinoma qRT-PCR analysis. Using data provided by The Cancer Genome Atlas, we identified DDX5, LAPTM4A, P4HB, RHOA, miR-28-5p, miR-34a-5p, and miR-186-5p as candidate reference genes and miRNAs. We used qRT-PCR to verify the expression levels of these candidates and another seven commonly used reference genes and miRNAs. A set of 50 paired human normal esophageal tissues and squamous cell carcinoma samples were used in the analysis. We then used geNorm and NormFinder to analyze the results. DDX5, LAPTM4A, RHOA, ACTB, RNU48, miR-28-5p, miR-34a-5p, and miR-186-5p were stably expressed, indicating they are suitable for used as references in qRT-PCR analysis of esophageal squamous cell carcinoma. However, expression levels of 18s rRNA, GAPDH, P4HB, 5s rRNA, U6, and RNU6B varied greatly between esophageal normal and squamous cell carcinoma samples, indicating that they are not suitable for use as references in the qRT-PCR analysis of esophageal squamous cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gadkar V, Filion M. New developments in quantitative real-time polymerase chain reaction technology. Curr Issues Mol Biol. 2014;16:1–6.

    PubMed  Google Scholar 

  2. Schwarzenbach H, Da SA, Calin G, Pantel K. Data normalization strategies for MicroRNA quantification. Clin Chem. 2015;61(11):1333–42. doi:10.1373/clinchem.2015.239459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406. doi:10.1007/s13353-013-0173-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin J, Redies C. Histological evidence: housekeeping genes beta-actin and GAPDH are of limited value for normalization of gene expression. Dev Genes Evol. 2012;222(6):369–76. doi:10.1007/s00427-012-0420-x.

    Article  CAS  PubMed  Google Scholar 

  5. Di Pardo BJ, Bronson NW, Diggs BS, Thomas CJ, Hunter JG, Dolan JP. The global burden of esophageal cancer: a disability-adjusted life-year approach. World J Surg. 2016;40(2):395–401. doi:10.1007/s00268-015-3356-2.

    Article  PubMed  Google Scholar 

  6. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  7. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385(9972):977–1010. doi:10.1016/S0140-6736(14)62038-9.

    Article  PubMed  Google Scholar 

  8. Hao L, Zhou X, Liu S, Sun M, Song Y, Du S, et al. Elevated GAPDH expression is associated with the proliferation and invasion of lung and esophageal squamous cell carcinomas. Proteomics. 2015;15(17):3087–100. doi:10.1002/pmic.201400577.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Ren Y, Wang Z, Xiong X, Han S, Pan W, et al. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc–rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. Febs Lett. 2015;589(24):3989–97. doi:10.1016/j.febslet.2015.11.012.

    Article  CAS  PubMed  Google Scholar 

  10. Maltseva DV, Khaustova NA, Fedotov NN, Matveeva EO, Lebedev AE, Shkurnikov MU, et al. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J Clin Bioinform. 2013;3(1):13. doi:10.1186/2043-9113-3-13.

    Article  CAS  Google Scholar 

  11. Zhan C, Yan L, Wang L, Jiang W, Zhang Y, Xi J, et al. Identification of reference miRNAs in human tumors by TCGA miRNA-seq data. Biochem Biophys Res Commun. 2014;453(3):375–8. doi:10.1016/j.bbrc.2014.09.086.

    Article  CAS  PubMed  Google Scholar 

  12. Taube M, Andersson-Assarsson JC, Lindberg K, Pereira MJ, Gabel M, Svensson MK, et al. Evaluation of reference genes for gene expression studies in human brown adipose tissue. Adipocyte. 2015;4(4):280–5. doi:10.1080/21623945.2015.1039884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barry SE, Chan B, Ellis M, Yang Y, Plit ML, Guan G, et al. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J Cell Mol Med. 2015;19(7):1606–13. doi:10.1111/jcmm.12535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Guan ZS, Guan SH, Yang K, Pan Y, Wu YY, et al. Identification of suitable candidate reference genes for gene expression analysis by RT-qPCR in peripheral blood mononuclear cells of CHB patients. Clin Lab. 2016;62(1–2):227–34.

    CAS  PubMed  Google Scholar 

  15. Bronkhorst AJ, Aucamp J, Wentzel JF, Pretorius PJ. Reference gene selection for in vitro cell-free DNA analysis and gene expression profiling. Clin Biochem. 2016;49(7–8):606–8. doi:10.1016/j.clinbiochem.2016.01.022.

    Article  CAS  PubMed  Google Scholar 

  16. Pereira-Fantini PM, Rajapaksa AE, Oakley R, Tingay DG. Selection of reference genes for gene expression studies related to lung injury in a preterm lamb model. Sci Rep. 2016;6:26476. doi:10.1038/srep26476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gharbi S, Shamsara M, Khateri S, Soroush MR, Ghorbanmehr N, Tavallaei M, et al. Identification of reliable reference genes for quantification of MicroRNAs in serum samples of sulfur mustard-exposed veterans. Cell J. 2015;17(3):494–501.

    PubMed  PubMed Central  Google Scholar 

  18. Serafin A, Foco L, Blankenburg H, Picard A, Zanigni S, Zanon A, et al. Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples. BMC Res Notes. 2014;7:715. doi:10.1186/1756-0500-7-715.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rice J, Roberts H, Rai SN, Galandiuk S. Housekeeping genes for studies of plasma microRNA: A need for more precise standardization. Surgery. 2015;158(5):1345–51. doi:10.1016/j.surg.2015.04.025.

    Article  PubMed  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):H34.

    Article  Google Scholar 

  21. Fjeldbo CS, Aarnes EK, Malinen E, Kristensen GB, Lyng H. Identification and validation of reference genes for RT-qPCR studies of hypoxia in squamous cervical cancer patients. PLOS ONE. 2016;11(5):e156259. doi:10.1371/journal.pone.0156259.

    Article  Google Scholar 

  22. Chapman JR, Waldenstrom J. With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS ONE. 2015;10(11):e141853. doi:10.1371/journal.pone.0141853.

    Article  Google Scholar 

  23. Bazzocco S, Dopeso H, Carton-Garcia F, Macaya I, Andretta E, Chionh F, et al. Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment. Clin Cancer Res. 2015;21(16):3695–704. doi:10.1158/1078-0432.CCR-14-2457.

    Article  CAS  PubMed  Google Scholar 

  24. Bakhashab S, Lary S, Ahmed F, Schulten HJ, Bashir A, Ahmed FW, et al. Reference genes for expression studies in hypoxia and hyperglycemia models in human umbilical vein endothelial cells. G3 (Bethesda). 2014;4(11):2159–65. doi:10.1534/g3.114.013102.

    Article  Google Scholar 

  25. Fortes MA, Marzuca-Nassr GN, Vitzel KF, Da JPC, Newsholme P, Curi R. Housekeeping proteins: How useful are they in skeletal muscle diabetes studies and muscle hypertrophy models? Anal Biochem. 2016;504:38–40. doi:10.1016/j.ab.2016.03.023.

    Article  CAS  PubMed  Google Scholar 

  26. Senhaji N, Elkhalfi B, Soukri A. Contribution to the study of glyceraldehyde-3-phosphate dehydrogenase in patients with type 2 diabetes. Pathol Biol (Paris). 2015;63(2):74–9. doi:10.1016/j.patbio.2014.03.002.

    Article  CAS  Google Scholar 

  27. Zhu G, Chang Y, Zuo J, Dong X, Zhang M, Hu G, et al. Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH. Biochem Biophys Res Commun. 2001;281(4):951–6. doi:10.1006/bbrc.2001.4439.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Q, Ali HA, Yu S, Zhang L, Li X, Du Z, et al. Evaluation and validation of the suitable control genes for quantitative PCR studies in plasma DNA for noninvasive prenatal diagnosis. Int J Mol Med. 2014;34(6):1681–7. doi:10.3892/ijmm.2014.1944.

    CAS  PubMed  Google Scholar 

  29. Wu DM, Zhang P, Xu GC, Tong AP, Zhou C, Lang JY, et al. Pemetrexed induces G1 phase arrest and apoptosis through inhibiting Akt activation in human non small lung cancer cell line A549. Asian Pac J Cancer Prev. 2015;16(4):1507–13.

    Article  PubMed  Google Scholar 

  30. Cheng WC, Chang CW, Chen CR, Tsai ML, Shu WY, Li CY, et al. Identification of reference genes across physiological states for qRT-PCR through microarray meta-analysis. PLoS ONE. 2011;6(2):e17347. doi:10.1371/journal.pone.0017347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mogal A, Abdulkadir SA. Effects of histone deacetylase inhibitor (HDACi); trichostatin-a (TSA) on the expression of housekeeping genes. Mol Cell Probes. 2006;20(2):81–6. doi:10.1016/j.mcp.2005.09.008.

    Article  CAS  PubMed  Google Scholar 

  32. Dankai W, Pongpom M, Vanittanakom N. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei. J Microbiol Methods. 2015;118:42–50. doi:10.1016/j.mimet.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  33. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004;313(4):856–62.

    Article  CAS  PubMed  Google Scholar 

  34. Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–52. doi:10.1261/rna.939908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This analysis is supported by the National Natural Science Foundation of China (Grant Nos. 81401875, 81472225) (http://www.nsfc.gov.cn/) and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1406000) (http://www.stcsm.gov.cn/). The results published here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/. And we would like to thank International Science Editing Co. for editing the language.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhan or Yu Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of Zhongshan Hospital, Fudan University (Shanghai, China; Approval No. B2015-094). All research is in compliance with the terms of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Li Chen, Yulin Jin, and Lin Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Jin, Y., Wang, L. et al. Identification of reference genes and miRNAs for qRT-PCR in human esophageal squamous cell carcinoma. Med Oncol 34, 2 (2017). https://doi.org/10.1007/s12032-016-0860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0860-7

Keywords

Navigation