Skip to main content
Log in

Ribosomal S6 kinase 4 (RSK4) expression in ovarian tumors and its regulation by antineoplastic drugs in ovarian cancer cell lines

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Survival rate in ovarian cancer depends on the stage of the disease. RSK4, which has been considered as a tumor suppressor factor, controls cells invasion due to its antiinvasive and antimetastatic properties. Modulation of RSK4 expression could be an important event to increase the survival rate in ovarian cancer patients. Thus, the goal of the present study was to establish the differences in RSK4 expression among normal, benign and malignant ovarian tissues and to determine whether antineoplastic drugs regulate its expression in SKOV3 and TOV-112D cells. RSK4 levels in 30 malignant ovarian tumors, 64 benign tumors and 36 normal ovary tissues were determined by reverse transcription polymerase chain reaction and Western blot. Modulation of RSK4 expression by two antineoplastic drugs (cisplatin and vorinostat) was also studied in the SKOV3 and TOV-112D ovarian cancer cell lines using the same techniques. RSK4 mRNA and protein levels were decreased in malignant ovarian tumors as compared to benign tumors and normal tissue. These low-RSK4 levels were significantly associated with advanced stages of ovarian cancer. RSK4 expression was increased after incubation of SKOV3 and TOV-112D cell lines with cisplatin and vorinostat for 24 h. The combination of these antineoplastic drugs did not produce a synergistic or additive effect. These results suggest that RSK4 is expressed at low levels in malignant ovarian tumors, which correlates with advanced stages of the disease. Additionally, RSK4 expression is regulated by cisplatin and vorinostat in two ovarian cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  3. Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2014;124:1–5.

    Article  PubMed  Google Scholar 

  4. Lopez-Vicente L, Armengol G, Pons B, et al. Regulation of replicative and stress-induced senescence by RSK4, which is down-regulated in human tumors. Clin Cancer Res. 2009;15:4546–53.

    Article  CAS  PubMed  Google Scholar 

  5. Dewdney SB, Rimel BJ, Thaker PH, et al. Aberrant methylation of the X-linked ribosomal S6 kinase RPS6KA6 (RSK4) in endometrial cancers. Clin Cancer Res. 2011;17:2120–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lopez-Vicente L, Pons B, Coch L, et al. RSK4 inhibition results in bypass of stress-induced and oncogene-induced senescence. Carcinogenesis. 2011;32:470–6.

    Article  CAS  PubMed  Google Scholar 

  7. Sturgill TW, Ray LB, Erikson E, Maller JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988;334:715–8.

    Article  CAS  PubMed  Google Scholar 

  8. Dummler BA, Hauge C, Silber J, et al. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J Biol Chem. 2005;280:13304–14.

    Article  PubMed  Google Scholar 

  9. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58.

    Article  CAS  PubMed  Google Scholar 

  10. Myers AP, Corson LB, Rossant J, Baker JC. Characterization of mouse Rsk4 as an inhibitor of fibroblast growth factor-RAS-extracellular signal-regulated kinase signaling. Mol Cell Biol. 2004;24:4255–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004;428:431–7.

    Article  CAS  PubMed  Google Scholar 

  12. Thakur A, Sun Y, Bollig A, et al. Anti-invasive and antimetastatic activities of ribosomal protein S6 kinase 4 in breast cancer cells. Clin Cancer Res. 2008;14:4427–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wang X, Wong SC, Pan J, et al. Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res. 1998;58:5019–22.

    CAS  PubMed  Google Scholar 

  14. Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level. Oncol Rep. 2003;10:1663–82.

    CAS  PubMed  Google Scholar 

  15. Kumagai T, Wakimoto N, Yin D, et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer. 2007;121:656–65.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  Google Scholar 

  17. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–91.

    Article  CAS  PubMed  Google Scholar 

  18. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Budczies J, Klauschen F, Sinn BV, et al. Cutoff finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. Plos One. 2012;7:e51862.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Thakur A, Xu H, Wang Y, Bollig A, Biliran H, Liao JD. The role of X-linked genes in breast cancer. Breast Cancer Res Treat. 2005;93:135–43.

    Article  CAS  PubMed  Google Scholar 

  21. LLeonart ME, Vidal F, Gallardo D, et al. New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep. 2006;16:603–8.

    CAS  PubMed  Google Scholar 

  22. Thakur A, Rahman KW, Wu J, et al. Aberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer. Mol Cancer Res. 2007;5:171–81.

    Article  CAS  PubMed  Google Scholar 

  23. Cai J, Ma H, Huang F, et al. Low expression of RSK4 predicts poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 2014;7:4959–70.

    PubMed Central  PubMed  Google Scholar 

  24. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  25. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.

    Article  CAS  PubMed  Google Scholar 

  26. Chen MY, Liao WS, Lu Z, et al. Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer. 2011;117:4424–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Modesitt SC, Parsons SJ. In vitro and in vivo histone deacetylase inhibitor therapy with vorinostat and paclitaxel in ovarian cancer models: does timing matter? Gynecol Oncol. 2010;119:351–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sonnemann J, Gange J, Pilz S, et al. Comparative evaluation of the treatment efficacy of suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer cell lines and primary ovarian cancer cells from patients. BMC Cancer. 2006;6:183.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dietrich CS, Greenberg VL, DeSimone CP, et al. Suberoylanilide hydroxamic acid (SAHA) potentiates paclitaxel-induced apoptosis in ovarian cancer cell lines. Gynecol Oncol. 2010;116:126–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Fondo de Investigación en Salud, Instituto Mexicano del Seguro Social (FIS/IMSS/PROT/G10/855) to Dr. Laura Díaz-Cueto. Carlos Eduardo Perez-Juarez was a graduate student in the Programa de Maestria en Ciencias Biologicas at the Universidad Nacional Autonoma de Mexico. He was supported by a scholarship from the CONACYT (No. Becario: 245530) and the Instituto Mexicano del Seguro Social (Matricula: 99095927), Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Diaz-Cueto.

Ethics declarations

Conflict of interest

All authors declare that they do not have conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arechavaleta-Velasco, F., Zeferino-Toquero, M., Estrada-Moscoso, I. et al. Ribosomal S6 kinase 4 (RSK4) expression in ovarian tumors and its regulation by antineoplastic drugs in ovarian cancer cell lines. Med Oncol 33, 11 (2016). https://doi.org/10.1007/s12032-015-0724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0724-6

Keywords

Navigation