Skip to main content

Advertisement

Log in

Cancer-associated fibroblast-derived CXCL12 causes tumor progression in adenocarcinoma of the esophagogastric junction

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although cancer-associated fibroblasts (CAFs) mainly produce CXCL12 and stimulate CXCL12/CXCR4 signaling in cancer cells, the significance of this interaction in adenocarcinoma of the esophagogastric junction (AEG) was unclear. This study investigated the functional characteristics of CAF-derived CXCL12 in AEG. Immunohistochemical staining for CXCL12 was performed on sections from 123 AEG patients and analyzed against clinicopathological data. Newly isolated CAFs and normal fibroblasts were examined for phenotype. An invasion assay was performed with AEG cells co-cultured with CAFs isolated from AEG. CXCL12 expression was significantly associated with age, depth of invasion, lymphatic invasion, and lymph node metastases. High CXCL12 expression significantly correlated with poor prognosis. Isolated CAFs had abundant α-smooth muscle actin expression and showed various CXCL12 expression patterns. Notably, AEG cells co-cultured with CXCLhigh-expressing CAFs invaded more than when co-cultured with CXCLlow-expressing CAFs; these invasive properties were impeded by CXCR4 antagonist AMD3100. We demonstrated that AEG cells co-cultured with CXCL12high CAFs were significantly more invasive than those co-cultured with CXCL12low CAFs and that high CXCL12 expression correlates with poor prognosis in AEG patients. CXCL12 derived from CAFs in tumor microenvironment stimulates CXCL12/CXCR4 signaling in AEG cells and promotes their invasive ability, resulting in tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hur C, Miller M, Kong CY, Dowling EC, Nattinger KJ, Dunn M, et al. Trends in esophageal adenocarcinoma incidence and mortality. Cancer. 2013;119(6):1149–58. doi:10.1002/cncr.27834.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kusano C, Gotoda T, Khor CJ, Katai H, Kato H, Taniguchi H, et al. Changing trends in the proportion of adenocarcinoma of the esophagogastric junction in a large tertiary referral center in Japan. J Gastroenterol Hepatol. 2008;23(11):1662–5. doi:10.1111/j.1440-1746.2008.05572.x.

    Article  PubMed  Google Scholar 

  3. Cen P, Banki F, Cheng L, Khalil K, Du XL, Fallon M, et al. Changes in age, stage distribution, and survival of patients with esophageal adenocarcinoma over three decades in the United States. Ann Surg Oncol. 2012;19(5):1685–91. doi:10.1245/s10434-011-2141-1.

    Article  PubMed  Google Scholar 

  4. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27. doi:10.1053/j.gastro.2013.01.002.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63. doi:10.1038/nrm809.

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi:10.1038/nrc1877.

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22. doi:10.1016/j.ccr.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  8. Pelchen-Matthews A, Signoret N, Klasse PJ, Fraile-Ramos A, Marsh M. Chemokine receptor trafficking and viral replication. Immunol Rev. 1999;168:33–49.

    Article  CAS  PubMed  Google Scholar 

  9. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  10. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6. doi:10.1038/35065016.

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87. doi:10.1007/s10555-006-9019-x.

    Article  CAS  PubMed  Google Scholar 

  12. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49(1):219–30. doi:10.1016/j.ejca.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  13. Ishigami S, Natsugoe S, Okumura H, Matsumoto M, Nakajo A, Uenosono Y, et al. Clinical implication of CXCL12 expression in gastric cancer. Ann Surg Oncol. 2007;14(11):3154–8. doi:10.1245/s10434-007-9521-6.

    Article  PubMed  Google Scholar 

  14. Lee HJ, Lee K, Lee DG, Bae KH, Kim JS, Liang ZL, et al. Chemokine (C-X-C motif) ligand 12 is associated with gallbladder carcinoma progression and is a novel independent poor prognostic factor. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(12):3270–80. doi:10.1158/1078-0432.CCR-11-2417.

    Article  CAS  Google Scholar 

  15. Yoshitake N, Fukui H, Yamagishi H, Sekikawa A, Fujii S, Tomita S, et al. Expression of SDF-1 alpha and nuclear CXCR4 predicts lymph node metastasis in colorectal cancer. Br J Cancer. 2008;98(10):1682–9. doi:10.1038/sj.bjc.6604363.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sasaki K, Natsugoe S, Ishigami S, Matsumoto M, Okumura H, Setoyama T, et al. Expression of CXCL12 and its receptor CXCR4 correlates with lymph node metastasis in submucosal esophageal cancer. J Surg Oncol. 2008;97(5):433–8. doi:10.1002/jso.20976.

    Article  PubMed  Google Scholar 

  17. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48. doi:10.1016/j.cell.2005.02.034.

    Article  CAS  PubMed  Google Scholar 

  18. Wald O, Izhar U, Amir G, Kirshberg S, Shlomai Z, Zamir G, et al. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: role in non-small cell lung cancer tumor proliferation. J Thorac Cardiovasc Surg. 2011;141(6):1503–12. doi:10.1016/j.jtcvs.2010.11.056.

    Article  CAS  PubMed  Google Scholar 

  19. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250(2):273–83. doi:10.1006/excr.1999.4543.

    Article  CAS  PubMed  Google Scholar 

  20. Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res. 2005;7(4):R402–10. doi:10.1186/bcr1022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dai X, Mao Z, Huang J, Xie S, Zhang H. The CXCL12/CXCR4 autocrine loop increases the metastatic potential of non-small cell lung cancer in vitro. Oncol Lett. 2013;5(1):277–82. doi:10.3892/ol.2012.960.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Uchida D, Onoue T, Tomizuka Y, Begum NM, Miwa Y, Yoshida H, et al. Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the distant metastasis of human oral squamous cell carcinoma. Mol Cancer Res. 2007;5(7):685–94. doi:10.1158/1541-7786.MCR-06-0368.

    Article  CAS  PubMed  Google Scholar 

  23. Nakazawa K, Yashiro M, Hirakawa K. Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Res. 2003;63(24):8848–52.

    CAS  PubMed  Google Scholar 

  24. Herrera M, Islam AB, Herrera A, Martin P, Garcia V, Silva J, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(21):5914–26. doi:10.1158/1078-0432.CCR-13-0694.

    Article  CAS  Google Scholar 

  25. Costea DE, Hills A, Osman AH, Thurlow J, Kalna G, Huang X, et al. Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res. 2013;73(13):3888–901. doi:10.1158/0008-5472.CAN-12-4150.

    Article  CAS  PubMed  Google Scholar 

  26. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(11):2927–31. doi:10.1158/1078-0432.CCR-09-2329.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Yuko Taniguchi, Naomi Yokoyama, and Yoko Ogata for their technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Baba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugihara, H., Ishimoto, T., Yasuda, T. et al. Cancer-associated fibroblast-derived CXCL12 causes tumor progression in adenocarcinoma of the esophagogastric junction. Med Oncol 32, 168 (2015). https://doi.org/10.1007/s12032-015-0618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0618-7

Keywords

Navigation