Skip to main content

Advertisement

Log in

CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Alterations in the expression of C–C chemokine receptor type 5 (CCR5 or CD195) have been correlated with disease progression in different cancers. Recently, a few investigations have reported the blockage of this receptor by an antagonist (maraviroc) and its antineoplastic effects on tumor cell growth. However, little is known about the mechanistic reasons behind these antineoplastic effects of CCR5 blockage by maraviroc. In this study, we blocked the CCR5 receptor by maraviroc in SW480 and SW620 colorectal cancer cells to study the resulting changes in biological properties and related pathways. This blockage induced significantly reduced proliferation and a profound arrest in G1 phase of the cell cycle. Concomitantly, maraviroc caused significant signs of apoptosis at morphological level. Significant modulation of multiple apoptosis-relevant genes was also noticed at mRNA levels. In addition, we found remarkable increases in cleaved caspases at protein level. These modulations led us to propose a signaling pathway for the observed apoptotic effects. In conclusion, blocking the CCR5 by maraviroc induces significant cytotoxic and apoptotic effects in colorectal cancer cells. Thus, maraviroc can be considered a model compound, which may foster the development of further CCR5 antagonists to be used for the treatment of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol. 2002;42:469–99. doi:10.1146/annurev.pharmtox.42.091901.115838.

    Article  CAS  PubMed  Google Scholar 

  2. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A. The chemokine system: redundancy for robust outputs. Immunol Today. 1999;20(6):254–7.

    Article  CAS  PubMed  Google Scholar 

  4. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–42. doi:10.1146/annurev.immunol.18.1.217.

    Article  CAS  PubMed  Google Scholar 

  5. Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007;25:787–820. doi:10.1146/annurev.immunol.24.021605.090529.

    Article  CAS  PubMed  Google Scholar 

  6. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. doi:10.1016/S0140-6736(00)04046-0.

    Article  CAS  PubMed  Google Scholar 

  7. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404(6776):407–11. doi:10.1038/35006097.

    Article  CAS  PubMed  Google Scholar 

  8. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50. doi:10.1038/nrc1388.

    Article  CAS  PubMed  Google Scholar 

  9. Raman D, Sobolik-Delmaire T, Richmond A. Chemokines in health and disease. Exp Cell Res. 2011;317(5):575–89. doi:10.1016/j.yexcr.2011.01.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010;21(1):27–39. doi:10.1016/j.cytogfr.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  11. Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med. 2010;16(3):133–44. doi:10.1016/j.molmed.2010.01.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett. 2007;256(2):137–65. doi:10.1016/j.canlet.2007.05.013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Richmond A. Chemokine modulation of the tumor microenvironment. Pigment Cell Melanoma Res. 2010;23(3):312–3. doi:10.1111/j.1755-148X.2010.00714.x.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  15. Garborg K, Holme O, Loberg M, Kalager M, Adami HO, Bretthauer M. Current status of screening for colorectal cancer. Ann Oncol. 2013;24(8):1963–72. doi:10.1093/annonc/mdt157.

    Article  CAS  PubMed  Google Scholar 

  16. Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry. 1996;35(11):3362–7. doi:10.1021/bi952950g.

    Article  CAS  PubMed  Google Scholar 

  17. Raport CJ, Gosling J, Schweickart VL, Gray PW, Charo IF. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem. 1996;271(29):17161–6.

    Article  CAS  PubMed  Google Scholar 

  18. Oppermann M. Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal. 2004;16(11):1201–10. doi:10.1016/j.cellsig.2004.04.007.

    Article  CAS  PubMed  Google Scholar 

  19. New DC, Wong YH. CC chemokine receptor-coupled signalling pathways. Acta Biochimica et Biophysica Sinica. 2003;35(9):779–88.

    CAS  PubMed  Google Scholar 

  20. Zimmermann T, Moehler M, Gockel I, Sgourakis GG, Biesterfeld S, Muller M, et al. Low expression of chemokine receptor CCR5 in human colorectal cancer correlates with lymphatic dissemination and reduced CD8+ T-cell infiltration. Int J Colorectal Dis. 2010;25(4):417–24. doi:10.1007/s00384-009-0868-y.

    Article  PubMed  Google Scholar 

  21. Erreni M, Bianchi P, Laghi L, Mirolo M, Fabbri M, Locati M, et al. Expression of chemokines and chemokine receptors in human colon cancer. Methods Enzymol. 2009;460:105–21. doi:10.1016/S0076-6879(09)05205-7.

    Article  CAS  PubMed  Google Scholar 

  22. Schimanski CC, Moehler M, Gockel I, Zimmermann T, Lang H, Galle PR, et al. Expression of chemokine receptor CCR5 correlates with the presence of hepatic molecular metastases in K-ras positive human colorectal cancer. J Cancer Res Clin Oncol. 2011;137(7):1139–45. doi:10.1007/s00432-011-0980-6.

    Article  CAS  PubMed  Google Scholar 

  23. Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett. 2014;352(1):36–53. doi:10.1016/j.canlet.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  24. de Oliveira CE, Oda JM, Losi Guembarovski R, de Oliveira KB, Ariza CB, Neto JS, et al. CC chemokine receptor 5: the interface of host immunity and cancer. Dis Markers. 2014;2014:126954. doi:10.1155/2014/126954.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, et al. Tumor-derived chemokine CCL5 enhances TGF-beta-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 2012;72(5):1092–102. doi:10.1158/0008-5472.CAN-11-2493.

    Article  CAS  PubMed  Google Scholar 

  26. Erreni M, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 2011;4(2):141–54. doi:10.1007/s12307-010-0052-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B, Pitard B, et al. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRbeta in colorectal carcinoma. PLoS ONE. 2011;6(12):e28842. doi:10.1371/journal.pone.0028842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ward ST, Li KK, Hepburn E, Weston CJ, Curbishley SM, Reynolds GM, et al. The effects of CCR5 inhibition on regulatory T-cell recruitment to colorectal cancer. Br J Cancer. 2015;112(2):319–28. doi:10.1038/bjc.2014.572.

    Article  CAS  PubMed  Google Scholar 

  29. Yost R, Pasquale TR, Sahloff EG. Maraviroc: a coreceptor CCR5 antagonist for management of HIV infection. Am J Health Syst Pharm. 2009;66(8):715–26. doi:10.2146/ajhp080206.

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  31. Velasco-Velazquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–50. doi:10.1158/0008-5472.CAN-11-3917.

    Article  CAS  PubMed  Google Scholar 

  32. Ochoa-Callejero L, Perez-Martinez L, Rubio-Mediavilla S, Oteo JA, Martinez A, Blanco JR. Maraviroc, a CCR5 antagonist, prevents development of hepatocellular carcinoma in a mouse model. PLoS ONE. 2013;8(1):e53992. doi:10.1371/journal.pone.0053992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mencarelli A, Graziosi L, Renga B, Cipriani S, D’Amore C, Francisci D, et al. CCR5 antagonism by maraviroc reduces the potential for gastric cancer cell dissemination. Transl Oncol. 2013;6(6):784–93.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Abel S, Russell D, Whitlock LA, Ridgway CE, Nedderman AN, Walker DK. Assessment of the absorption, metabolism and absolute bioavailability of maraviroc in healthy male subjects. Br J Clin Pharmacol. 2008;65(Suppl 1):60–7. doi:10.1111/j.1365-2125.2008.03137.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sugimoto M, Nakamura T, Ohtani N, Hampson L, Hampson IN, Shimamoto A, et al. Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes Dev. 1999;13(22):3027–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18(22):2699–711. doi:10.1101/gad.1256504.

    Article  CAS  PubMed  Google Scholar 

  37. Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO, et al. Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol. 1999;19(1):612–22.

    CAS  PubMed  Google Scholar 

  38. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. doi:10.1080/01926230701320337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lee SH, Meng XW, Flatten KS, Loegering DA, Kaufmann SH. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm. Cell Death Differ. 2013;20(1):64–76. doi:10.1038/cdd.2012.93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Eimon PM, Kratz E, Varfolomeev E, Hymowitz SG, Stern H, Zha J, et al. Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ. 2006;13(10):1619–30. doi:10.1038/sj.cdd.4402015.

    Article  CAS  PubMed  Google Scholar 

  41. Rautureau GJ, Day CL, Hinds MG. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Int J Mol Sci. 2010;11(4):1808–24. doi:10.3390/ijms11041808.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Xu G, Shi Y. Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res. 2007;17(9):759–71. doi:10.1038/cr.2007.52.

    Article  CAS  PubMed  Google Scholar 

  43. Chen M, Wang J. Initiator caspases in apoptosis signaling pathways. Apoptosis. 2002;7(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  44. Abraham MC, Shaham S. Death without caspases, caspases without death. Trends Cell Biol. 2004;14(4):184–93. doi:10.1016/j.tcb.2004.03.002.

    Article  CAS  PubMed  Google Scholar 

  45. Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338. doi:10.1038/cddis.2012.86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Berger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervaiz, A., Ansari, S., Berger, M.R. et al. CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 32, 158 (2015). https://doi.org/10.1007/s12032-015-0607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0607-x

Keywords

Navigation