Skip to main content

Advertisement

Log in

Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

We determined the expression of epithelial-mesenchymal transition (EMT) indicator proteins, E-cadherin (E-cad), vimentin (VIM), mucin 1 (MUC1) and S100 calcium-binding protein A4 (S100A4) in hepatocellular carcinoma (HCC) patient tissue samples. We also investigated the relationship between the expression of these proteins and clinicopathologic factors in HCC. Finally, we assessed the potential value of these markers as prognostic indicators of survival in HCC patients. The expression of E-cad, VIM, MUC1 and S100A4 EMT indicator proteins was assessed in tissue microarray HCC tissue sections and corresponding peritumoral normal tissues by immunohistochemistry. In addition, the expression for the four EMT indicator proteins was correlated with clinicopathological features of HCC and patient outcome. Comparison of clinicopathological characteristics and immunohistochemistry by χ2 analysis revealed that downregulation of E-cad in HCC was significantly associated with later TNM cancer stage (P = 0.012), gross classification (P = 0.018), regional lymph node metastasis (P = 0.036) and liver cirrhosis (P = 0.028). Increased S100A4 expression in HCC was significantly associated with differentiation (P = 0.032), tumor with a complete fibrous capsule (P = 0.031) and portal vein invasion (P = 0.038). High VIM expression in HCC was significantly associated with high serum α-fetoprotein levels (P = 0.016). We also observed that low E-cad expression was significantly associated with overexpression of VIM (P = 0.001). Kaplan–Meier survival and Cox regression analysis revealed that low E-cad expression (HR = 0.164, 95 % CI 0.072 to 0.373, P < 0.001) and high serum α-fetoprotein levels (HR = 2.202, 95 % CI 1.054 to 4.598, P = 0.036) were independent prognostic factors in HCC. Our study demonstrates that high S100A4 and VIM expression and low E-cad expression correlate with an aggressive, malignant phenotype in HCC. These results also support a role for E-cad as a prognostic factor in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Parkin DM, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  3. McGlynn KA, London WT. Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 2005;19(1):3–23.

    Article  PubMed  Google Scholar 

  4. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87.

    Article  CAS  PubMed  Google Scholar 

  5. Faivre S, Bouattour M, Raymond E. Novel molecular therapies in hepatocellular carcinoma. Liver Int. 2011;31(Suppl 1):151–60.

    Article  PubMed  Google Scholar 

  6. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31(4):339–46.

    Article  CAS  PubMed  Google Scholar 

  7. Soini Y, et al. Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer. 2011;11:73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Li LP, et al. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics. 2011;11(3):429–39.

    Article  CAS  PubMed  Google Scholar 

  9. Soltermann A, et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res. 2008;14(22):7430–7.

    Article  CAS  PubMed  Google Scholar 

  10. van Zijl F, et al. A human model of epithelial to mesenchymal transition to monitor drug efficacy in hepatocellular carcinoma progression. Mol Cancer Ther. 2011;10(5):850–60.

    Article  PubMed  Google Scholar 

  11. Yi ZY, et al. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in hepatocellular carcinoma cells. J Invest Surg. 2011;24(2):67–76.

    Article  PubMed  Google Scholar 

  12. Kim J, et al. Epithelial-mesenchymal transition gene signature to predict clinical outcome of hepatocellular carcinoma. Cancer Sci. 2010;101(6):1521–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Behrens J, et al. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell–cell adhesion. J Cell Biol. 1989;108(6):2435–47.

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto S, et al. Mesenchymal to epithelial transition in the human ovarian surface epithelium focusing on inclusion cysts. Oncol Rep. 2009;21(5):1209–14.

    CAS  PubMed  Google Scholar 

  16. Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  17. Myong NH. Loss of E-cadherin and acquisition of vimentin in epithelial-mesenchymal transition are noble indicators of uterine cervix cancer progression. Korean J Pathol. 2012;46(4):341–8.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kaimori A, et al. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem. 2007;282(30):22089–101.

    Article  CAS  PubMed  Google Scholar 

  19. Guan F, Handa K, Hakomori SI. Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci USA. 2009;106(18):7461–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vaid M, Singh T, Katiyar SK. Grape seed proanthocyanidins inhibit melanoma cell invasiveness by reduction of PGE2 synthesis and reversal of epithelial-to-mesenchymal transition. PLoS ONE. 2011;6(6):e21539.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sato Y, et al. Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma. Am J Pathol. 2010;177(1):141–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ghoul A, et al. Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res. 2009;69(10):4260–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lo JF, et al. The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Res. 2011;71(5):1912–23.

    Article  CAS  PubMed  Google Scholar 

  24. Martin FT, et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010;124(2):317–26.

    Article  CAS  PubMed  Google Scholar 

  25. Sun T, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51(2):545–56.

    Article  CAS  PubMed  Google Scholar 

  26. Yang MH, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74.

    Article  CAS  PubMed  Google Scholar 

  27. Wang G, et al. A comparison of Twist and E-cadherin protein expression in primary non-small-cell lung carcinoma and corresponding metastases. Eur J Cardiothorac Surg. 2011;39(6):1028–32.

    Article  PubMed  Google Scholar 

  28. Zheng G, et al. Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol. 2009;175(2):580–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  CAS  PubMed  Google Scholar 

  30. Stein U, et al. The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology. 2006;131(5):1486–500.

    Article  CAS  PubMed  Google Scholar 

  31. Grigorian M, et al. Effect of mts1 (S100A4) expression on the progression of human breast cancer cells. Int J Cancer. 1996;67(6):831–41.

    Article  CAS  PubMed  Google Scholar 

  32. Xue C, et al. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 2003;63(12):3386–94.

    CAS  PubMed  Google Scholar 

  33. Mahon PC, et al. S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res. 2007;67(14):6786–95.

    Article  CAS  PubMed  Google Scholar 

  34. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68(18):3033–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4(1):45–60.

    Article  CAS  PubMed  Google Scholar 

  36. Kohlgraf KG, et al. Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 2003;63(16):5011–20.

    CAS  PubMed  Google Scholar 

  37. Kim MA, et al. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology. 2009;54(4):442–51.

    Article  PubMed  Google Scholar 

  38. Huang LY, et al. S100A4 over-expression underlies lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol. 2011;17(1):69–78.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Toiyama Y, et al. Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 2013;34(11):2548–57.

    Article  CAS  PubMed  Google Scholar 

  40. Yamashita N, et al. Vimentin as a poor prognostic factor for triple-negative breast cancer. J Cancer Res Clin Oncol. 2013;139(5):739–46.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong XY, et al. Positive association of up-regulated Cripto-1 and down-regulated E-cadherin with tumour progression and poor prognosis in gastric cancer. Histopathology. 2008;52(5):560–8.

    Article  PubMed  Google Scholar 

  42. Zhang Z, et al. Significance of TWIST expression and its association with E-cadherin in bladder cancer. Hum Pathol. 2007;38(4):598–606.

    Article  CAS  PubMed  Google Scholar 

  43. Ando H, et al. Prognostic significance of the expression of MUC1 and collagen type IV in advanced gastric carcinoma. Br J Surg. 2009;96(8):901–9.

    Article  CAS  PubMed  Google Scholar 

  44. Deng J, et al. The role of tumour-associated MUC1 in epithelial ovarian cancer metastasis and progression. Cancer Metastasis Rev. 2013;32(3–4):535–51.

    Article  CAS  PubMed  Google Scholar 

  45. Li ZS, Li Q. The latest 2010 WHO classification of tumors of digestive system. Zhonghua Bing Li Xue Za Zhi. 2011;40(5):351–4.

    PubMed  Google Scholar 

  46. Huang J, et al. Prognostic significance and potential therapeutic target of VEGFR2 in hepatocellular carcinoma. J Clin Pathol. 2011;64(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  47. Boyer B, Valles AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol. 2000;60(8):1091–9.

    Article  CAS  PubMed  Google Scholar 

  48. Onder TT, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  CAS  PubMed  Google Scholar 

  49. Boye K, Maelandsmo GM. S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 2010;176(2):528–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Social Development and Applied Research Projects (K2010012) of Nantong, Jiangsu, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yixin Zhang or Guoxin Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Zhu, H., Wang, W. et al. Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC. Med Oncol 31, 970 (2014). https://doi.org/10.1007/s12032-014-0970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0970-z

Keywords

Navigation