Skip to main content
Log in

Prognostic value of matrix metalloprotease-1/protease-activated receptor-1 axis in patients with prostate cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the associations of matrix metalloprotease-1 (MMP-1) and its receptor protease-activated receptor-1 (PAR-1) coexpression with the clinicopathological characteristics and prognosis of patients with prostate cancer (PCa). Immunohistochemistry was performed to detect the expression changes of MMP-1 and PAR-1 proteins in 180 pairs of human PCa tissues and matched non-cancerous prostate tissues. Then, the associations of combined MMP-1 and PAR-1 expression with selected clinicopathological characteristics and patient prognosis were evaluated. Both MMP-1 and PAR-1 proteins were positively localized in cytoplasm of tumor cells in PCa tissues. Compared with non-cancerous prostate tissues, MMP-1 (PCa vs. Normal: 4.15 ± 1.28 vs. 2.37 ± 1.16, P < 0.001) and PAR-1 (PCa vs. Normal: 3.71 ± 1.21 vs. 1.55 ± 1.12, P < 0.001) protein expression were both significantly upregulated. More interestingly, the expression levels of MMP-1 in PCa tissues were positively correlated with those of PAR-1 significantly (Spearman correlation coefficient r = 0.88, P < 0.001). In addition, the coexpression of MMP-1 and PAR-1 (MMP-1-high/PAR-1-high) in PCa tissues was significantly associated with the higher Gleason score (P < 0.001), the presence of metastasis (P < 0.001) and the advanced pathological stage (P = 0.009). Furthermore, both univariate and multivariate analyses showed that MMP-1-high/PAR-1-high expression was an independent predictor for both unfavorable overall survival and biochemical recurrence-free survival. These findings confirmed for the first time that the upregulation of MMP-1 protein combined with the overexpression of PAR-1 protein may contribute to the malignant progression of PCa. More importantly, MMP-1/PAR-1 axis may be a negative prognostic factor for patients with PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  4. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34:2041–51.

    Article  CAS  PubMed  Google Scholar 

  5. Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol. 2012;303:H919–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Blackburn JS, Liu I, Coon CI, Brinckerhoff CE. A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene. 2009;28:4237–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Benson CS, Babu SD, Radhakrishna S, Selvamurugan N, Ravi Sankar B. Expression of matrix metalloproteinases in human breast cancer tissues. Dis Markers. 2013;34:395–405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gencer S, Cebeci A, Irmak-Yazicioglu MB. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines. Chin J Cancer Res. 2013;25:322–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Said AH, Raufman JP, Xie G. The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel). 2014;6:366–75.

    Article  Google Scholar 

  10. Zhong WD, Han ZD, He HC, Bi XC, Dai QS, Zhu G, Ye YK, Liang YX, Qin WJ, Zhang Z, Zeng GH, Chen ZN. CD147, MMP-1, MMP-2 and MMP-9 protein expression as significant prognostic factors in human prostate cancer. Oncology. 2008;75:230–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cardillo MR, Di Silverio F, Gentile V. Quantitative immunohistochemical and in situ hybridization analysis of metalloproteinases in prostate cancer. Anticancer Res. 2006;26:973–82.

    CAS  PubMed  Google Scholar 

  12. Albayrak S, Cangüven O, Göktaş C, Aydemir H, Köksal V. Role of MMP-1 1G/2G promoter gene polymorphism on the development of prostate cancer in the Turkish population. Urol Int. 2007;79:312–5.

    Article  CAS  PubMed  Google Scholar 

  13. Tressel SL, Kaneider NC, Kasuda S, Foley C, Koukos G, Austin K, Agarwal A, Covic L, Opal SM, Kuliopulos A. A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med. 2011;3:370–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Austin KM, Covic L, Kuliopulos A. Matrix metalloproteases and PAR1 activation. Blood. 2013;121:431–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kaufmann R, Hollenberg MD. Proteinase-activated receptors (PARs) and calcium signaling in cancer. Adv Exp Med Biol. 2012;740:979–1000.

    Article  CAS  PubMed  Google Scholar 

  16. Eroğlu A, Karabıyık A, Akar N. The association of protease activated receptor 1 gene-506 I/D polymorphism with disease-free survival in breast cancer patients. Ann Surg Oncol. 2012;19:1365–9.

    Article  PubMed  Google Scholar 

  17. Uziely B, Turm H, Maoz M, Cohen I, Maly B, Bar-Shavit R. Par genes: molecular probes to pathological assessment in breast cancer progression. Patholog Res Int. 2011;2011:178265.

    PubMed Central  PubMed  Google Scholar 

  18. Peng HH, Zhang X, Cao PG. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma. Braz J Med Biol Res. 2012;45:86–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liao M, Tong P, Zhao J, Zhang Y, Li Z, Wang J, Feng X, Hu M, Pan Y. Prognostic value of matrix metalloproteinase-1/proteinase-activated receptor-1 signaling axis in hepatocellular carcinoma. Pathol Oncol Res. 2012;18:397–403.

    Article  CAS  PubMed  Google Scholar 

  20. Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P, Lam PY. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009;27:1366–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yang R, Xu Y, Li P, Zhang X, Wang J, Gu D, Wang Y. Combined upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 predicts unfavorable prognosis in human nasopharyngeal carcinoma. Onco Targets Ther. 2013;6:1139–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Fujimoto D, Hirono Y, Goi T, Katayama K, Yamaguchi A. Prognostic value of protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1) in gastric cancer. Anticancer Res. 2008;28:847–54.

    CAS  PubMed  Google Scholar 

  23. Blackburn JS, Brinckerhoff CE. Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Pathol. 2008;173:1736–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Eck SM, Blackburn JS, Schmucker AC, Burrage PS, Brinckerhoff CE. Matrix metalloproteinase and G protein coupled receptors: co-conspirators in the pathogenesis of autoimmune disease and cancer. J Autoimmun. 2009;33:214–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li T, Huang S, Dong M, Gui Y, Wu D. Prognostic impact of SUMO-specific protease 1 (SENP1) in prostate cancer patients undergoing radical prostatectomy. Urol Oncol. 2013;31:1539–45.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Qi C, Li L, Luo F, Xu Y. Clinical significance of NUCB2 mRNA expression in prostate cancer. J Exp Clin Cancer Res. 2013;32:56.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hua X, Yu L, Pan W, Huang X, Liao Z, Xian Q, Fang L, Shen H. Increased expression of Golgi phosphoprotein-3 is associated with tumor aggressiveness and poor prognosis of prostate cancer. Diagn Pathol. 2012;7:127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Malaquin N, Vercamer C, Bouali F, Martien S, Deruy E, Wernert N, Chwastyniak M, Pinet F, Abbadie C, Pourtier A. Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS ONE. 2013;8:e63607.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim SJ, Shin JY, Lee KD, Bae YK, Choi IJ, Park SH, Chun KH. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS ONE. 2011;6:e25103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wang FQ, Fisher J, Fishman DA. MMP-1-PAR1 axis mediates LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol. 2011;120:247–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingyi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, D., Zhou, W. et al. Prognostic value of matrix metalloprotease-1/protease-activated receptor-1 axis in patients with prostate cancer. Med Oncol 31, 968 (2014). https://doi.org/10.1007/s12032-014-0968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0968-6

Keywords

Navigation