Skip to main content
Log in

Contribution of comorbidities and grade of bone marrow fibrosis to the prognosis of survival in patients with primary myelofibrosis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The widely used current International Prognostic Scoring System (IPSS) for primary myelofibrosis (PMF) is based on clinical parameters. The objective of this study was to identify additional prognostic factors at the time of diagnosis, which could have an impact on the future treatment of patients with PMF. We conducted a study of 131 consecutive PMF patients with median follow-up of 44 months. Data on baseline demographics, clinical and laboratory parameters, IPSS, grade of bone marrow fibrosis (MF), as well as influence of concomitant comorbidities were analyzed in terms of survival. Comorbidity was assessed using the Adult Comorbidity Evaluation-27 (ACE-27) score and the hematopoietic cell transplantation comorbidity index. An improved prognostic model of survival was obtained by deploying the MF and ACE-27 to the IPSS. A multivariable regression analyses confirmed the statistical significance of IPSS (P < 0.001, HR 3.754, 95 % CI 2.130–6.615), MF > 1 (P = 0.001, HR 2.694, 95 % CI 1.466–4.951) and ACE-27 (P < 0.001, HR 4.141, 95 % CI 2.322–7.386) in predicting the survival of patients with PMF. When the IPSS was modified with MF and ACE-27, the final prognostic model for overall survival was stratified as low (score 0–1), intermediate (score 2–3) and high risk (score 4–6) with median survival of not reached, 115 and 22 months, respectively (P < 0.001). Our findings indicate that the combination of histological changes, comorbidity assessment and clinical parameters at the time of diagnosis allows better discrimination of patients in survival prognostic groups and helps to identify high-risk patients for a poor outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  2. Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23(33):8520–30.

    Article  CAS  PubMed  Google Scholar 

  3. Kralovic R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  Google Scholar 

  4. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cervantes F, Pereira A, Esteve J, Rafel M, Cobo F, Rozman C, et al. Identification of “long-lived” and “short-lived” patients at presentation of primary myelofibrosis. Br J Haematol. 1997;97(3):635–40.

    Article  CAS  PubMed  Google Scholar 

  6. Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia. 2008;22(5):905–14.

    Article  CAS  PubMed  Google Scholar 

  7. Tefferi A, Huang J, Schwager S, Li CY, Wu W, Pardanani A, et al. Validation and comparison of contemporary prognostic models in primary myelofibrosis: analysis based on 334 patients from a single institution. Cancer. 2007;109(10):2083–8.

    Article  PubMed  Google Scholar 

  8. Dupriez B, Morel P, Demory JL, Lai JL, Simon M, Plantier I, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88(3):1013–8.

    CAS  PubMed  Google Scholar 

  9. Cervantes F, Barosi G, Demory JL, Reilly J, Guarnone R, Dupriez B, et al. Myelofibrosis with myeloid metaplasia in young individuals: disease characteristics, prognostic factors and identification of risk groups. Br J Haematol. 1998;102(3):684–90.

    Article  CAS  PubMed  Google Scholar 

  10. Tam CS, Kantarjian H, Cortes J, Lynn A, Pierce S, Zhou L, et al. Dynamic model for predicting death within 12 months in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. J Clin Oncol. 2009;27(33):5587–93.

    Article  PubMed  Google Scholar 

  11. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the international working group for myelofibrosis research and treatment. Blood. 2009;113(13):2895–901.

    Article  CAS  PubMed  Google Scholar 

  12. Cervantes F, Mesa R, Barosi G. New and old treatment modalities in primary myelofibrosis. Cancer J. 2007;13(6):377–83.

    Article  CAS  PubMed  Google Scholar 

  13. Kerbauy DM, Gooley TA, Sale GE, Flowers ME, Doney KC, Georges GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007;13(3):355–65.

    Article  PubMed  Google Scholar 

  14. Verstovsek S. JAK2 inhibitors and myeloproliferative neoplasms. Clin Adv Hematol Oncol. 2008;6(12):878–80 896.

    PubMed  Google Scholar 

  15. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.

    PubMed  Google Scholar 

  16. Piccirillo JF, Costas I, Claybour P, Borah AJ, Grove L, Jeffe D. The measurement of comorbidity by cancer registries. J Registry Manag. 2003;30:8–14.

    Google Scholar 

  17. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kvasnicka HM, Thiele J, Schmitt-Graeff A, Diehl V, Zankovich R, Niederle N, et al. Bone marrow features improve prognostic efficiency in multivariate risk classification of chronic-phase Ph (1+) chronic myelogenous leukaemia: a multicenter trial. J Clin Oncol. 2001;19(12):2994–3009.

    CAS  PubMed  Google Scholar 

  19. Subramanian R, Basu D, Dutta TK. Significance of bone marrow fibrosis in multiple myeloma. Pathology. 2007;39(5):512–5.

    Article  CAS  PubMed  Google Scholar 

  20. Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27(5):754–62.

    Article  PubMed  Google Scholar 

  21. Vener C, Fracchiolla NS, Gianelli U, Calori R, Radaelli F, Iurlo A, et al. Prognostic implications of the European consensus for grading of bone marrow fibrosis in chronic idiopathic myelofibrosis. Blood. 2008;111(4):1862–5.

    Article  CAS  PubMed  Google Scholar 

  22. Gianelli U, Vener C, Bossi A, Cortinovis I, Iurlo A, Fracchiolla NS, et al. The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mod Pathol. 2012;25(9):1193–202.

    Article  PubMed  Google Scholar 

  23. Thiele J, Kvasnicka HM. Grade of bone marrow fibrosis is associated with relevant hematological findings—a clinicopathological study on 865 patients with chronic idiopathic myelofibrosis. Ann Hematol. 2006;85(4):226–32.

    Article  CAS  PubMed  Google Scholar 

  24. Piccirillo JF, Tierney RM, Costas I, Grove L, Spitznagel EL Jr. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA. 2004;291(20):2441–7.

    Article  CAS  PubMed  Google Scholar 

  25. Naqvi K, Garcia-Manero G, Sardesai S, Oh J, Vigil CE, Pierce S, et al. Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model. J Clin Oncol. 2011;29(16):2240–6.

    Article  PubMed  Google Scholar 

  26. Wang R, Gross CP, Halene S, Ma X. Comorbidities and survival in a large cohort of patients with newly diagnosed myelodysplastic syndromes. Leuk Res. 2009;33(12):1594–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sorror ML, Sandmaier BM, Storer BE, Franke GN, Laport GG, Chauncey TR, et al. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies. JAMA. 2011;306(17):1874–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kieszak SM, Flanders WD, Kosinski AS, Shipp CC, Karp H. A comparison of the Charlson comorbidity index derived from medical record data and administrative billing data. J Clin Epidemiol. 1999;52(2):137–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no competing financial or other interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Lekovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lekovic, D., Gotic, M., Perunicic-Jovanovic, M. et al. Contribution of comorbidities and grade of bone marrow fibrosis to the prognosis of survival in patients with primary myelofibrosis. Med Oncol 31, 869 (2014). https://doi.org/10.1007/s12032-014-0869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0869-8

Keywords

Navigation