Skip to main content

Advertisement

Log in

Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Checkpoint kinase 1 (CHEK1) is an evolutionarily conserved Ser/Thr kinase, which mediates cell-cycle arrest after DNA damage, and we previously reported that CHEK1 was overexpressed and associated with poor prognosis in hepatocellular carcinoma (HCC), indicating it was oncogenic gene. In this study, we aimed to elucidate the mechanism of CHEK1 overexpression in HCC. We first verified the upregulated CHEK1 by qRT-PCR and western blot in 30 HCC samples compared with corresponding non-tumor liver tissues. In silico analysis showed that CHEK1 was a candidate target of miR-497, which was previously found to be downregulated in HCC by us. To test whether miR-497 could bind to 3′untranslated region (3′UTR) of CHEK1, luciferase reporter assay was conducted. The result revealed that miR-497 could bind to the 3′untranslated region (3′UTR) of CHEK1 mRNA. Western blot showed that ectopic expression of miR-497 suppressed the CHEK1 expression and inhibition of miR-497 led to significant upregulation of CHEK1. Finally, miR-497 expression was measured in the same 30 HCC samples, and the correlation between miR-497 and CHEK1 was analyzed. The results indicated that miR-497 was downregulated in HCC and had a significant negative correlation with CHEK1. Taken together, these results demonstrated that CHEK1 was negatively regulated by miR-497, and the overexpressed CHEK1 was resulted from the downregulated miR-497 in HCC, which provided a potential molecular target for HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dai Y, Grant S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res. 2010;16(2):376–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Merry C, Fu K, Wang J, Yeh IJ, Zhang Y. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle. 2010;9(2):279–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dent P, Tang Y, Yacoub A, Dai Y, Fisher PB, Grant S. CHK1 inhibitors in combination chemotherapy: thinking beyond the cell cycle. Mol Interv. 2011;11(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  4. Carrassa L, Damia G. Unleashing Chk1 in cancer therapy. Cell Cycle. 2011;10(13):2121–8.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  6. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  7. Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol. 2010;3:37.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wei R, Huang GL, Zhang MY, Li BK, Zhang HZ, Shi M, et al. Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. Clin Cancer Res. 2013;19(17):4780–91.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  10. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell. 2008;13(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  11. Hong J, Hu K, Yuan Y, Sang Y, Bu Q, Chen G, et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest. 2012;122(6):2165–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Speers C, Tsimelzon A, Sexton K, Herrick AM, Gutierrez C, Culhane A, et al. Identification of novel kinase targets for the treatment of estrogen receptor-negative breast cancer. Clin Cancer Res. 2009;15(20):6327–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K, et al. The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor/progesterone receptor/HER-2 breast carcinomas. Cancer Res. 2007;67(14):6574–81.

    Article  CAS  PubMed  Google Scholar 

  14. al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJ, Lehmann AR, Carr AM. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell. 1994;5(2):147–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Arlander SJ, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem. 2006;281(5):2989–98.

    Article  CAS  PubMed  Google Scholar 

  16. Grabauskiene S, Bergeron EJ, Chen G, Chang AC, Lin J, Thomas DG, et al. CHK1 levels correlate with sensitization to pemetrexed by CHK1 inhibitors in non-small cell lung cancer cells. Lung Cancer. 2013;82(3):477–84.

    Article  PubMed  Google Scholar 

  17. Gadhikar MA, Sciuto MR, Alves MV, Pickering CR, Osman AA, Neskey DM, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12(9):1860–73.

    Article  CAS  PubMed  Google Scholar 

  18. Russell MR, Levin K, Rader J, Belcastro L, Li Y, Martinez D, et al. Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma. Cancer Res. 2013;73(2):776–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian XW, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391(1):535–41.

    Article  CAS  PubMed  Google Scholar 

  20. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11(2):136–46.

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST. Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology. 2012;56(1):186–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122(8):2884–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, et al. Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 2011;17(7):1722–30.

    Article  CAS  PubMed  Google Scholar 

  24. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24(4):652–7.

    Article  CAS  PubMed  Google Scholar 

  25. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, et al. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2010;101(1):241–9.

    Article  CAS  PubMed  Google Scholar 

  27. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 2012;32(15):1910–20.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No: 30973397 to H-Y W).

Conflict of interest

The authors declare no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Yun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Wei, RR., Huang, GL. et al. Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma. Med Oncol 31, 844 (2014). https://doi.org/10.1007/s12032-014-0844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0844-4

Keywords

Navigation