Skip to main content

Advertisement

Log in

Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Dysregulation of microRNA-100 (miR-100) has been shown to be involved in cancer tumorigenesis and progression of several cancer types. However, its expression patterns in tumors are controversial. The aim of this study was to investigate the expression and clinical significance of miR-100 in colorectal cancer (CRC). Quantitative real-time PCR was used to analyze the expression of miR-100 in 138 pairs of human CRC and adjacent normal tissues. The prognostic values of miR-100 in CRC were also analyzed. The results showed that the miR-100 expression was significantly downregulated in CRC tissues when compared to adjacent normal tissues (P < 0.001). Also, low miR-100 expression was observed to be significantly correlated with larger tumor size (P = 0.023), higher incidence of lymph node metastasis (P = 0.009), and advanced TNM stage (P = 0.016). More importantly, Kaplan–Meier analysis showed that CRC patients with low miR-100 expression tended to have shorter overall survival. In multivariate analysis stratified for known prognostic variables, low miR-100 expression was identified as an independent prognostic factor for overall survival. In conclusion, our data indicated for the first time that the downregulation of miR-100 was associated with advanced clinical features and poor prognosis of CRC patients, suggesting that miR-100 downregulation may serve as an unfavorable prognostic biomarker in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi:10.3322/caac.21166.

    Article  PubMed  Google Scholar 

  2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  3. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31. doi:10.1038/nrg1379.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi:10.1016/j.ydbio.2006.08.028.

    Article  PubMed  CAS  Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. doi:10.1038/nature03702.

    Article  PubMed  CAS  Google Scholar 

  6. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89. doi:10.1038/nrd3179.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Zhou XJ, Dong ZG, Yang YM, Du LT, Zhang X, Wang CX. Limited diagnostic value of microRNAs for detecting colorectal cancer: a meta-analysis. Asian Pac J Cancer Prev. 2013;14(8):4699–704.

    Article  PubMed  Google Scholar 

  8. Nair VS, Maeda LS, Ioannidis JP. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst. 2012;104(7):528–40. doi:10.1093/jnci/djs027.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ma XL, Liu L, Liu XX, Li Y, Deng L, Xiao ZL, et al. Prognostic role of microRNA-21 in non-small cell lung cancer: a meta-analysis. Asian Pac J Cancer Prev. 2012;13(5):2329–34.

    Article  PubMed  Google Scholar 

  10. Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, et al. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 2010;126(9):2036–48. doi:10.1002/ijc.24880.

    PubMed  CAS  Google Scholar 

  11. Oliveira JC, Brassesco MS, Morales AG, Pezuk JA, Fedatto PF, da Silva GN, et al. MicroRNA-100 acts as a tumor suppressor in human bladder carcinoma 5637 cells. Asian Pac J Cancer Prev. 2011;12(11):3001–4.

    PubMed  Google Scholar 

  12. Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27(4):1238–44. doi:10.3892/or.2012.1625.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ, et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA. 2010;107(47):20471–6. doi:10.1073/pnas.1009009107.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wang G, Chen L, Meng J, Chen M, Zhuang L, Zhang L. Overexpression of microRNA-100 predicts an unfavorable prognosis in renal cell carcinoma. Int Urol Nephrol. 2013;45(2):373–9. doi:10.1007/s11255-012-0374-y.

    Article  PubMed  Google Scholar 

  15. Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 2012;31(1):80–92. doi:10.1038/onc.2011.208.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D, et al. MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 2014;31(5):2055–62. doi:10.3892/or.2014.3075.

    PubMed  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  PubMed  CAS  Google Scholar 

  18. Woolf SH. The best screening test for colorectal cancer—a personal choice. N Engl J Med. 2000;343(22):1641–3. doi:10.1056/nejm200011303432211.

    Article  PubMed  CAS  Google Scholar 

  19. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. Lancet. 2005;365(9454):153–65. doi:10.1016/s0140-6736(05)17706-x.

    Article  PubMed  Google Scholar 

  20. Perera RJ, Ray A. MicroRNAs in the search for understanding human diseases. BioDrugs. 2007;21(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  21. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36. doi:10.1038/sj.onc.1210856.

    Article  PubMed  CAS  Google Scholar 

  22. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299(4):425–36. doi:10.1001/jama.299.4.425.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 2012;72(14):3631–41. doi:10.1158/0008-5472.can-12-0667.

    Article  PubMed  CAS  Google Scholar 

  24. Feng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, et al. Colorectal cancer migration and invasion initiated by microRNA-106a. PloS One. 2012;7(8):e43452. doi:10.1371/journal.pone.0043452.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11:23. doi:10.1186/1476-4598-11-23.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 2012;586(16):2375–81. doi:10.1016/j.febslet.2012.05.049.

    Article  PubMed  CAS  Google Scholar 

  27. Huang L, Lin JX, Yu YH, Zhang MY, Wang HY, Zheng M. Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix. PloS One. 2012;7(3):e33762. doi:10.1371/journal.pone.0033762.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer. 2009;48(7):569–82. doi:10.1002/gcc.20666.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Doghman M, El Wakil A, Cardinaud B, Thomas E, Wang J, Zhao W, et al. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res. 2010;70(11):4666–75. doi:10.1158/0008-5472.can-09-3970.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Camara-Lopes LH, et al. MicroRNA expression profiles in the progression of prostate cancer–from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol. 2013;31(6):796–801. doi:10.1016/j.urolonc.2011.07.002.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Xi, Q., Wang, Q. et al. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol 31, 235 (2014). https://doi.org/10.1007/s12032-014-0235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0235-x

Keywords

Navigation