Skip to main content

Advertisement

Log in

Overexpression of Nedd9 is a prognostic marker of human gastric cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The present study was designed to evaluate the expression and prognostic significance of neural precursor cell-expressed, developmentally downregulated 9 (Nedd9) in patients with gastric cancer. Overexpression of Nedd9 was detected in a number of human cancers and was associated with progression and poor prognosis of the diseases. The expression of Nedd9 and focal adhesion kinase (FAK) were detected using the tissue microarray technique and immunohistochemical method and compared with clinicopathological parameters of patients with gastric cancer. The expressions of Nedd9 and FAK were upregulated in gastric cancer lesions compared with their expression in adjacent non-malignant tissues. High expression of Nedd9 correlated with age, location of tumor, tumor size, depth of invasion, vessel invasion, lymph node metastasis, and distant metastasis, and also with expression of FAK. Further, multivariate analysis suggested that expression of Nedd9 and FAK were independent prognostic indicators for gastric cancer. Cumulative 5-year survival rates of patients with high expression of both Nedd9 and FAK was significantly lower than those with low expression of both. Nedd9 was implicated in the progression of gastric cancer. Based on the TNM stage, Nedd9 and FAK proteins could be useful prognostic marker to predict tumor progression and prognosis in gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sentani K, Oue N, Sakamoto N, et al. Upregulation of connexin 30 in intestinal phenotype gastric cancer and its reduction during tumor progression. Pathobiology. 2010;77:241–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bi J, Lau SH, Lv ZL, et al. Overexpression of YKL-40 is an independent prognostic marker in gastric cancer. Hum Pathol. 2009;40:1790–7.

    Article  CAS  PubMed  Google Scholar 

  3. Yu G, Wang J, Chen Y, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res. 2009;15:1821–9.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao ZS, Wang YY, Chu YQ, Ye ZY, Tao HQ. SPARC is associated with gastric cancer progression and poor survival of patients. Clin Cancer Res. 2010;16:260–8.

    Article  CAS  PubMed  Google Scholar 

  5. Alberts SR, Cervantes A, de Velde CJ. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14(Suppl 2):ii31–6.

    PubMed  Google Scholar 

  6. Wang XQ, Terry PD, Yan H. Review of salt consumption and stomach cancer risk: epidemiological and biological evidence. World J Gastroenterol. 2009;15:2204–13.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rajdev L. Treatment options for surgically resectable gastric cancer. Curr Treat Options Oncol. 2010;11:14–23.

    Article  PubMed  Google Scholar 

  8. Kovoor PA, Hwang J. Treatment of resectable gastric cancer: current standards of care. Expert Rev Anticancer Ther. 2009;9:135–42.

    Article  PubMed  Google Scholar 

  9. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer. 2007;10:75–83.

    Article  PubMed  Google Scholar 

  10. Kong SH, Park DJ, Lee HJ, et al. Clinicopathologic features of asymptomatic gastric adenocarcinoma patients in Korea. Jpn J Clin Oncol. 2004;34:1–7.

    Article  PubMed  Google Scholar 

  11. Hsu NY, Chow KC, Chen WJ, et al. Expression of nm23 in the primary tumor and the metastatic regional lymph nodes of patients with gastric cardiac cancer. Clin Cancer Res. 1999;5:1752–7.

    CAS  PubMed  Google Scholar 

  12. Pappou EP, Ahuja N. The role of oncogenes in gastrointestinal cancer. Gastrointest Cancer Res. 2010;1(Suppl 1):S2–15.

    Google Scholar 

  13. Bargon SD, Gunning PW, O’Neill GM. The Cas family docking protein, HEF1, promotes the formation of neurite-like membrane extensions. Biochim Biophys Acta. 2005;1746:143–54.

    Article  CAS  PubMed  Google Scholar 

  14. Sasaki T, Iwata S, Okano HJ, et al. Nedd9 protein, a Cas-L homologue, is upregulated after transient global ischemia in rats: possible involvement of Nedd9 in the differentiation of neurons after ischemia. Stroke. 2005;36:2457–62.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Bi L, Wang H, et al. NEDD9 rs760678 polymorphism and the risk of Alzheimer’s disease: a meta-analysis. Neurosci Lett. 2012;527:121–5.

    Article  CAS  PubMed  Google Scholar 

  16. Sanz-Moreno V, Gadea G, Ahn J, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–23.

    Article  CAS  PubMed  Google Scholar 

  17. Zhong J, Baquiran JB, Bonakdar N, et al. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration. PLoS One. 2012;7(4):e35058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bradbury P, Mahmassani M, Zhong J, et al. PP2A phosphatase suppresses function of the mesenchymal invasion regulator NEDD9. Biochim Biophys Acta. 2012;1823:290–7.

    Article  CAS  PubMed  Google Scholar 

  19. Little JL, Serzhanova V, Izumchenko E, et al. A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice. Oncogene 2013; Jan 14. doi: 10.1038/onc.2012.607.

  20. Speranza MC, Frattini V, Pisati F, et al. NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Oncotarget. 2012;3:723–34.

    PubMed Central  PubMed  Google Scholar 

  21. Natarajan M, Stewart JE, Golemis EA, et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene. 2006;25:1721–32.

    Article  CAS  PubMed  Google Scholar 

  22. Kim M, Gans JD, Nogueira C, et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 2006;125:1269–81.

    Article  CAS  PubMed  Google Scholar 

  23. Golubovskaya VM, Conway-Dorsey K, Edmiston SN, et al. FAK overexpression and p53 mutations are highly correlated in human breast cancer. Int J Cancer. 2009;125:1735–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Park JH, Lee BL, Yoon J, et al. Focal adhesion kinase (FAK) gene amplification and its clinical implications in gastric cancer. Hum Pathol. 2010;41:1664–73.

    Article  CAS  PubMed  Google Scholar 

  25. Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta. 2004;1692:77–102.

    Article  CAS  PubMed  Google Scholar 

  26. Meng XN, Jin Y, Yu Y, et al. Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer. 2009;101:327–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Singh MK, Izumchenko E, Klein-Szanto AJ, et al. Enhanced genetic instability and dasatinib sensitivity in mammary tumor cells lacking NEDD9. Cancer Res. 2010;70:8907–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Singh M, Cowell L, Seo S, et al. Molecular basis for HEF1/NEDD9/Cas-L action as a multifunctional co-ordinator of invasion, apoptosis and cell cycle. Cell Biochem Biophys. 2007;48:54–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. O’Neill GM, Golemis EA. Proteolysis of the docking protein HEF1 and implications for focal adhesion dynamics. Mol Cell Biol. 2001;21:5094–108.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Zheng M, McKeown-Longo PJ. Regulation of HEF1 expression and phosphorylation by TGF-beta 1 and cell adhesion. J Biol Chem. 2002;277:39599–608.

    Article  CAS  PubMed  Google Scholar 

  31. de Jong R, van WA, Haataja L, et al. BCR/ABL-induced leukemogenesis causes phosphorylation of Hef1 and its association with Crkl. J Biol Chem. 1997;272:32649–55.

    Article  PubMed  Google Scholar 

  32. Pugacheva EN, Golemis EA. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol. 2005;7:937–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ahn J, Sanz-Moreno V, Marshall CJ. The metastasis gene NEDD9 product acts through integrin beta3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J Cell Sci. 2012;125:1814–26.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Bavarva JH, Wang Z, et al. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene. 2011;30:2633–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kong C, Wang C, Wang L, et al. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer. PLoS One. 2011;6:e22666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chang JX, Gao F, Zhao GQ, et al. Expression and clinical significance of NEDD9 in lung tissues. Med Oncol. 2012;29:2654–60.

    Article  CAS  PubMed  Google Scholar 

  37. O’Neill GM, Seo S, Serebriiskii IG, et al. A new central scaffold for metastasis: parsing HEF1/Cas-L/NEDD9. Cancer Res. 2007;67:8975–9.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Law SF, Estojak J, Wang B, et al. Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16:3327–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Minegishi M, Tachibana K, Sato T, et al. Structure and function of Cas-L, a 105-kD Crk-associated substrate-related protein that is involved in beta 1 integrin-mediated signaling in lymphocytes. J Exp Med. 1996;184:1365–75.

    Article  CAS  PubMed  Google Scholar 

  40. Izumchenko E, Singh MK, Plotnikova OV, et al. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res. 2009;69:7198–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. van SGA, Salmen HJ, Law SF, et al. Focal adhesion kinase regulates beta1 integrin-dependent T cell migration through an HEF1 effector pathway. Eur J Immunol. 2001;31:1417–27.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Jun Yao for their assistance with statistical analysis. We thank the Zhejiang Provincial Department of Science and Technology Research Foundation (Grant No. 2008C33040) and the Zhejiang Medical College Research Foundation (Grant No. 2013XZB01) for their financial support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Sheng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, H., Ma, Y. et al. Overexpression of Nedd9 is a prognostic marker of human gastric cancer. Med Oncol 31, 33 (2014). https://doi.org/10.1007/s12032-014-0033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0033-5

Keywords

Navigation